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Introduction: Flow cytometry has been around for over 40 years, but only

recently has the opportunity arisen to move into the high-throughput domain.

The technology is now available and is highly competitive with imaging tools

under the right conditions. Flow cytometry has, however, been a technology

that has focused on its unique ability to study single cells and appropriate

analytical tools are readily available to handle this traditional role of

the technology.

Areas covered: Expansion of flow cytometry to a high-throughput (HT) and

high-content technology requires both advances in hardware and analytical

tools. The historical perspective of flow cytometry operation as well as how

the field has changed and what the key changes have been discussed. The

authors provide a background and compelling arguments for moving toward

HT flow, where there are many innovative opportunities. With alternative

approaches now available for flow cytometry, there will be a considerable

number of new applications. These opportunities show strong capability for

drug screening and functional studies with cells in suspension.

Expert opinion: There is no doubt that HT flow is a rich technology

awaiting acceptance by the pharmaceutical community. It can provide a

powerful phenotypic analytical toolset that has the capacity to change

many current approaches to HT screening. The previous restrictions on

the technology, based on its reduced capacity for sample throughput, are

no longer a major issue. Overcoming this barrier has transformed a mature

technology into one that can focus on systems biology questions not

previously considered possible.

Keywords: automated classification, drug screening, flow cytometry, high throughput,

pathway analysis, phenotypic classification
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1. Introduction

The power of flow cytometry lies in its unique ability to acquire measurements on
every single cell without interference from sample background or other cells, and
evaluate each one for many different functional parameters, all in microseconds.
The fastest cell sorters can process around 100,000 cells/second, and the fastest
analyzers about 70,000 cells/second. Therefore, these instruments offer far greater
cell-analysis rates than any imaging system available today, including all the high-
throughput HCS instruments so readily used for screening. The major limitations
of flow cytometry are the need to keep cells in suspension and the very limited access
to spatial information. This is an obvious disadvantage if the model cells of interest
are those attached to culture dishes.

Flow cytometry (FC) does not have a long tradition of being employed as a high-
throughput cell-analysis technology, where the term “high-throughput” implies
thousands to tens of thousands of samples per day. In fact, most common applications
of FC analysis process only 50 to 150 samples on any given day. Thus for researchers

10.1517/17460441.2012.693475 © 2012 Informa UK, Ltd. ISSN 1746-0441 1
All rights reserved: reproduction in whole or in part not permitted

E
xp

er
t O

pi
n.

 D
ru

g 
D

is
co

v.
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
Pu

rd
ue

 U
ni

ve
rs

ity
 o

n 
06

/1
9/

12
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



familiar only with traditional applications of flow cytometry
and conventional hardware, this technology would not be
associated with a high sample-analysis rate.
However, this notion is not correct. The modern FC instru-

ments are suited to high-throughput studies, and the availability
of high-throughput cytometry (HT) may be one of the most
exciting technological opportunities for the fields of study
employing a systems biology approach. With laboratory auto-
mation and robotics, it is now possible to process significantly
larger numbers of samples per day on a single instrument.
Subsequent analyses of multiple populations of cells to quantify
various phenotypes can be accomplished in almost real time.
However, there are significant differences in how these studies
are performed using HT devices, as opposed to traditional flow
cytometry. Additionally, it has to be recognized, issues are that
HT flow cytometry is still an emerging technology; therefore
the practical issues facing the users are very significant.
Flow cytometry is a tool that allows analysis of single cells

producing data that are inherently quantitative in nature. The
original attempts to study single cells, in the 1930s, involved
simple tools focused on counting individual blood cells [1]. Sub-
sequently, the flow cytometry pioneers introduced [2,3] sensitive
photodetectors to separate cells and particles and attempted to
evaluate cellular content by measuring cellular absorbance [4]

or by other electronic means [5]. In the early 1950s, Wallace
Coulter proposed a highly accurate cell counter based on
measurement of impedance that changed the world of cellular
analysis [6,7]. This technology was the basis for Mack Fulwyler’s
invention of the cell sorter, the first true flow cytometer in
today’s sense of the word.When Fulwyler designed his cell sorter
in 1965, little did he know that the fundamental technology of
his instrument, which was able to measure just a couple of
samples a day [8], in less than 50 years would be the basis for auto-
mated systems with the ability to process a thousand samples an
hour [9]. As flow cytometry significantly increased its capabilities,
so too were the applications expanded, from cellular impedance

measurement to one-color fluorescence[10], all the way to studies
employing 17 or more fluorescently-labeled biomarkers [11].
Thus it can be argued that modern flow cytometry can acquire
by far the highest content among single-cell analysis tools.
More recent developments in flow cytometry hardware allowed
the amount of functional data per cell to increase well beyond
any assay available for imaging modalities; this will be discussed
below [12].

What sets flow cytometry apart from other technologies is the
ability to study, measure, and analyze heterogeneous populations
of cells one cell at a time. While genomic and proteomic
approaches are powerful systems biology tools, they also have
their disadvantages owing to the fact that samples are processed
and analyzed in bulk. However, if mixed cells (serum, tissue,
etc.) are the starting materials, the specific source of detected bio-
logical response is unclear. Proteins found in mixed-cell samples
could be derived from any, some, or all of the present cell popu-
lations. On the other hand, FC is able to differentiate various cell
types [13-22]. This ability to classify individual cells into popula-
tions defined on a basis of phenotypic differences is a strong suit
of cytometry and enables this approach to study complex mix-
tures of cells without loss of information. Figure 1 illustrates this
issue. In most cases, the separation and classification of cells is
achieved using unique surfacemarkers signifyingwell-understood
functional properties of cells.

However, flow cytometry is not restricted to cellular surface-
antigen expression. Functional characteristics are also well within
the capacity of the technology and facilitate the differentiation of
functional subsets of cellular populations [23-44].

2. The traditional data-analysis techniques
of flow cytometry

The traditional flow cytometry analysis pipeline involves
fluorescence-based detection of descriptors of cell function or
molecular content and an interactive, operator-guided data-
analysis component that uses 1- or 2-D visualization formats
that allow “gating” (selection of cellular populations of interest)
and computation of summary statistics. The data processing
can be performed by an FC operator using various dedicated
cytometry-analysis packages. One of the most important
aspects of this technology is a well-established standardization
of data structure, described by the Flow Cytometry Standard
(FCS), that was established 3 decades ago by the International
Society for Advancement of Cytometry (ISAC), and has been
recognized by all FC hardware manufacturers [45]. This
standard was further enhanced to FCS 2.0 in 1990 [46], and
again in 1997 to FCS 3.0 [47], with a minor revision to FCS
3.1 in 2010 [48]. The next-generation version of the standard
is currently in development, and will cover not only the data
representation but also many important aspects of processing
an analysis, such as gating, mathematical transformations,
etc. [49]. The existence of the standard leads to a thriving market
of third-party data analysis packages. Commercial programs
such as FCS Express� (De Novo Software, Los Angeles, CA),

Article highlights.

. Flow cytometry can be performed in high throughput as
well as a very high content mode.

. Data analysis for such data sets, while complex, can be
performed in a rapid and robust way.

. Advanced classification solutions are plentiful and can
be modified to be applied to very large flow cytometry
data sets in a semi-automated fashion.

. Automated preparation of assays is a key aspect of
high-throughput flow cytometry and is required for the
throughput and quality control.

. HT flow now has the capacity to be an effective systems
biology tool as very large assay systems can be
developed and run in a very short time window.

. Very complex analysis is possible with HT flow
particularly when you integrate the entire assay and use
new tools that can be applied in parallel.

This box summarizes key points contained in the article.
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FlowJo� (Tree Star, Ashland, OR), WinList (Verity Software
House, Topsham, Maine), Kaluza� (Beckman-Coulter, Brea,
CA), and others can be used with data obtained from various
FC instruments. Additionally, a number of free tools written
for users of R language for scientific computing are available
within Bioconductor library Table 1 (see above).

All these tools use a conceptually similar process, which
starts with so-called compensation (linear unmixing of
raw fluorescence readouts using information available from
single-stained controls), followed by visualization of the
compensated values in the form of 2-D dot plots or density
plots that enable creation of gates (manually defined regions
of interest) in a cascading manner (see Figure 2).

Some specific applications of flow cytometry require
more specialized approaches. For example, Gemstone�

(Verity Software House, Topsham, ME) uses Markov-chain
modeling to define the origin and final differentiation state
of a person’s white blood cells. This technique enables a
physician to determine the differentiation state of cell types
that might be predictive of particular clinical conditions, or
a clinical scientist to better understand the outcome of
patients for whom flow cytometry is being used to monitor
changes in cellular phenotypes [50,51].

3. High-throughput flow cytometry

3.1 The emergence of the technology
While there is no authoritative threshold of throughput
for a high-throughput screening (HTS) technology, some
fundamental premises are generally accepted. First, assays
are carried out in 96-, 384-, or 1536-well plates that are

usually set up and manipulated within the context of an
automation system. Second, screening practitioners usually
define throughput in terms of the “number of compounds”
that can be screened per day. If single wells are the basis for
reporting the results of screening, most HTS operations
would expect at least 10,000 to 50,000 collectable events
daily; some technologies claim far higher efficiency, such as
up to 108 enzyme-based reactions per day [52].

The technology of high-throughput flow cytometry
combines the very high cell-analysis rate -- a capability of
any FC instrumentation -- with speedy sample processing
and access to common HTS sample-handling formats such
as multi-well plates.

It is not uncommon for a technological concept to be
envisioned many years prior to its emergence as a practical
capability. In the case of HTFC, the key ideas of barcoding
samples [53], using complex file structure for storing data
representations of multiple samples [54], and the use of
time-of-measurement as a parameter for separating multiple
continuously measured samples [55] were all proposed over
20 years ago, and all are now fundamental components of
HTFC domain.

Although the carousels for traditional analysis tubes have
been available for many FC instrument providing a possibility
of automated analysis, the key peripheral for making HTFC a
reality came through the integration of robotic sampling into
the FC process by Sklar’s group [56-58]. This was transforma-
tional for the field -- the Sklar’s technology allowed analysis
of hundreds of samples arranged in standard multi-well plates
in a high-speed, orderly fashion. The advantage of Sklar’s
device is that it allows sampling of small volumes (~ 1 µL).

Genomics

Phosphorylation
states

Proteins
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Phosphorylation
states
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result

Every cell, every result

Proteins

Cytokines
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Genomics-expert.xar

Figure 1. The major advantage of the cytomics (i.e., single-cell analysis) approach is the ability to interrogate single cells and

to separate functionally and phenotypically distinctive populations of cells during the process of statistical analysis of the

entire biological system. Every defined population can be studied separately or in the context of functional relations to

other populations.
Reproduced from a poster presented at the NIH Common Fund Single Cell Analysis Workshop, April 17 -- 18, 2012 [115] by the University Cytometry Laboratories

with their permission.
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In contrast, most current sampling systems available for com-
mercial flow cytometers sample 25 -- 250 µL -- volumes far
greater than normally available for the majority of HT assays.
Integration with robust robotic technology effects sampling
for 96-, 384- or 1536-well plates.

3.2 Multifactorial high-throughput FC
The concept of HT cellular screening implies that a great
number of samples will be processed, but does not indicate
whether the measurements should represent responses of cells
exposed to thousands of compounds, or to just a few com-
pounds characterized by very large number of variables
describing cellular responses in multiple relevant conditions.
Multifactorial flow cytometry, which focuses on the latter
model, may potentially have a greater impact on systems
biology than the traditionally understood throughput-
focused screening. It is important to underline the difference
between traditional multiparametric flow cytometry and
multifactorial flow cytometry. The increase in number of
simultaneously measured biomarkers conveying functional
parameters of cells underscores multiparamertic cytometry.
However, it is the availability of automation and high
throughput that allowed for rapid collection of data from bio-
logical samples exposed to various environments or pertur-
bants (drugs or growth factors). Therefore, multifactorial
data describe a complex response pattern that a heterogeneous

population may demonstrate. An example of such a multifac-
torial flow cytometry study performed by Nolan’s group is
summarized in Figure 3 (figure is based on personal commu-
nication). In this example, more than 2000 dose--response
curves characterizing 14 populations exposed to a set of acti-
vating molecules and various drugs were generated from cells
arranged in a single 96-well plate.

It is also crucial to note that multifactorial flow cytometry
differs in some important aspects from other multifactorial
analysis techniques, such as image-based HCS. The techni-
ques utilizing flow employ labels (usually fluorescence-based)
which directly indicate the presence of certain molecular
markers or physiological features. Imaging systems can simul-
taneously collect only a very limited number of spectrally dis-
tinctive fluorescence intensities. A typical image-based study
employs three fluorescence markers, whereas studies utilizing
a flow cytometry system often make use of 10 markers and
more. On the other hand, a huge number of secondary
parameters can be derived from just a few image-based
features [59] For example, using just one fluorescent label,
an automated microscope system can derive various descrip-
tors of location, texture, or shape [60]. These concepts are
employed in techniques such as location proteomics [61].
Often the image-based descriptors can be used to characterize
very complex biological responses that are not necessarily easy
to summarize by any single molecular biomarker.
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Figure 2. Traditional flow cytometry analyzes one sample at a time. Due to the interactivity required for visualization and

gating, this approach is relatively slow and cumbersome. In the provided example four gating steps were defined. The first

and the third gates are polygonal and are defined in two-dimensional spaces formed by FC-measured variables. The steps

numbered 2 and 4 use only one variable and simple thresholding to separate cells demonstrating high intensity of

fluorescence in specific bands.
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The employed descriptors in these advanced imaging
approaches, such as image texture in the nuclear region or other
exotic feature, may not be directly linked to any well-defined
molecular biomarker but this not mean that they are less power-
ful. For example, in the study by Neumann et al. the researchers
were able to pinpoint involvement of over 500 genes in the cell-
division process, using millions of images characterized by hun-
dreds of various image features [62]. If one attempted to repeat
such a study usingmolecularmarkers for every one of the studied
genes, one would need 500 well-defined molecular targets
for labeling.

Consequently, image-based single-cell analysis excels if cell
function or observed perturbation is described in a fuzzy way
(for instance, by change in shape during the differentiation).
It is not an accident that one of the most common applications
in HCS is measurement of protein translocation, where tempo-
ral--spatial relationships are key components of these functional
probes. However, performing image-based measurements
requires computationally complex algorithms; the image-based
features used to characterize cells are often not orthogonal and
the data have to be further reduced. The biological complexity
is addressed by combining many image features using
statistical machine-learning techniques [63].

In contrast to imaging methods, multifactorial flow cytometry
benefits directly from access to the very high dimensionality of
biological information. Flow cytometry relies on labeled molecu-
lar biomarkers and is capable of quantifying many of them
simultaneously. Therefore, highly complex biological systems
comprising large number of cellular populations with many
different functions can be studied in FC by exposing the sample
to various external factors, such as drugs in many concentrations
or activators, or measurements at multiple time points. For every
combination of factors, an independent high-content FC

experiment may be performed. The addition of HT ability of
modern FCmeans that a complete combinatorial setmay bemea-
sured and quantified withinminutes. This is a blend of speed and
content unavailable to any other single-cell analysis technique.

Although the number of factors is limited only by the experi-
mental design and the plate format used, the number of simulta-
neously measured molecular features depends on the detection
technology employed. Owing to the spectral overlap between
fluorescence labels and to the practical problems of staining bio-
chemistry, fluorescence-based detection in flow has not exceeded
17 bands, with the exception of approaches such asmultispectral
cytometry of Raman-based detection that may be able to expand
this number further [64-67]. Recently, in a radical departure from
optical detection, Tanner et al. proposed utilization of mass
spectroscopy-based measurements in flow cytometry [68,69], in
which isotopes of heavy metals are the conjugated molecules
linked to specific antibodies. This approach pushes the number
of available functional descriptors much higher.

4. Flow cytometry data processing

4.1 The computational dilemma
The combination of multifactorial design of flow experiments
and throughput produces data sets that cannot be interpreted
using traditional flow cytometry software. High throughput is
driven by quick processing of many samples, either by sequential
analysis using robotic samplers, or by barcoding and multi-
plexing, increases the number of simultaneously available
functional parameters acquired for every measured cell and pro-
duces data sets of a high order. The HTFC data sets are too large
and complex for methods which typically produce simple
spreadsheet-like outputs, and are practically inaccessible for rapid
interpretation by flow cytometer operators and researchers.
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Figure 3. The multifactorial experimental design demonstrated in this figure, based on a study from Bodenmiller (personal

communication), allows simultaneous study of responses demonstrated by nine populations of cells to a number of drugs in

the presence of 14 activators. Over 30 functional parameters based on molecular markers of phosphorylation were measured

for every one of the 14 cell types in the system.
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As mentioned before, flow cytometry data processing and
statistical analysis traditionally assumed that only a single
file (representing a single biological sample) is analyzed at a
given time and that the phenotypes of interest are defined
by flow cytometer operators who create cascading set of gates.
Therefore, visualization and analysis of data representing mul-
tiple samples requires a repetitive process. Consequently,
information extracted from one sample could not be easily
correlated with measurements performed on other samples.
It is also clear that within the described operator-driven for-
mat, the task of statistical analysis of thousands of samples
could take several hours or even days. This is why HT flow
cytometry requires a change in approach.
Some flow cytometry analysis software vendors responded to

the challenge by providing batch-analysis utility. However, the
batch-processing function delivers a very limited solution given
the biological differences between samples and the fact that tradi-
tional flow cytometry data analysis requires interactivity for
defining populations and subpopulations of interest. The prob-
lem with traditional analytical tools is the lack of capacity to
capture the entire assay or present the results in a fast, simple
way, and researchers should not have an expectation that they
must wait days for results. The real purpose of performing HT
assays is to create large-scale comparisons of samples, drugs, acti-
vators, or cell types. The processes must be viewed as a system
approach, not as a sample approach. Addressing the data com-
plexity of multifactorial flow cytometry data required the con-
certed use of bioinformatics and machine-learning tools. Some
of the proposed solutions are summarized below.

4.2 Storage, analysis, and mining of high-content

FC data
Data for dozens of parameters collected on millions of cells
introduce many challenges at the stages of processing and
visualization. Storage, annotation, and exchange of highly
structured multifactorial data sets require specialty custom-
tailored informatics solutions designed with FC in mind. One
such approach is the Cytobank system developed by a team
at Stanford University. Cytobank captures all the important
metadata describing multifactorial high-content FC data and
combines the information about experimental design with
sophisticated data-presentation techniques and statistical analy-
sis of FC measurements. The key to the successful use of tools
like Cytobank is careful documentation of the experimental
design to provide accurate details regarding antibodies, conju-
gates, reagents, optical filters employed, etc. Cytobank also
includes some sophisticated data-processing capabilities, such
as automated extraction of response curves and interpretation
of cellular barcodes [70]. Further knowledge deduction for the
creation of networks based on Bayesian learning from HT
flow cytometry has been shown to be possible [71]. Cytobank
can also use advanced visualization tools such as the SPADE
algorithm [72], which assists in displaying and identifying
large numbers of simultaneously studied cell phenotypes
(see Figure 4). The Cytobank system was chosen to power the

FlowRepository, an ISAC-backed project to build a public
repository of cytometry data to promote reproducibility,
exchangeability, and peer review of FC experiments. An exam-
ple of an advanced analysis enabled by this system is the con-
struction of “Markov neighborhoods” for each variable based
on a variety of dependencies and which performs structured
learning using a constrained search [73].

4.3 Current approaches for advanced analysis

of flow cytometry data
The sine qua non for automated analysis of high-throughput flow
cytometry data is the availability and practical implementation of
modern pattern-recognition, machine-learning, and statistical
procedures to interpret, process, and analyze flow cytometry
data sets. Without access to a statistical analysis toolkit, flow
cytometry practitioners are limited to manual data analysis,
which is not scalable and cannot be extended to HT experiments
and resultant data models. Owing to biological and instrumental
variability, a simple batch-processing approach that re-applies
an operator’s manual analysis steps to a large number of flow
cytometry files does not work well in practice and cannot be
recommended. Therefore, the success of automation in FC
data processing is intimately connected to progress in the devel-
opment of easy-to-use scientific computational programs for
general statistical analysis.

The early work on application of machine learning-
inspired methods in FC dates back to the early 2000s [74-76].
State-of-the-art classification techniques such as neural networks
and support vector machines were demonstrated to perform well
when applied to flow cytometry data sets. Similar approaches
utilizing advanced pattern-recognition tools were subsequently
applied successfully by other researchers [77,78]. Tools such as
Logicle Transformation [79] were embedded within the field
and have now been widely applied [80]. However, the initial
lack of a unified development environment for FC data analysis
severely hindered progress and limited the impact of modern
pattern-recognition methods on automation of FC data process-
ing. Only recently has modern statistical methodology finally
become available to all cytometry practitioners willing to invest
a reasonable amount of time in learning the basics of statistics
and programming.

This methodology became possible due to the efforts of
the bioinformatics community, which faced a similar set of prob-
lems dealing with large data sets and the demand for immense
data collection and analysis throughput. The push toward
standardization, data exchangeability, and ability to peer-
review the procedure, techniques, and algorithms used resulted
in the adoption of a popular open-source statistical program-
ming language know as R for development and deployment of
bioinformatics processing tools. R was an ideal choice -- it is a
dialect of the powerful S language created by John Chambers
at Bell Labs, which has been used by statisticians since the
1980s. However, in contrast to S, R is an open-source project
initiated by Ross Ihaka and Robert Gentleman at the University
of Auckland, New Zealand. The openness of R and the
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involvement of one of its creators in the field of bioinformatics
were important factors leading to the Bioconductor initiative.

The Bioconductor project, which aimed at coordinating
R-based bioinformatics-related data-analysis packages for biolo-
gists, was initiated in 2001 at theDanaFarberCancer Institute [81].
The 1.0 release of Bioconductor contained only 15 packages,
none of which related to cytometry. By 2011 the number of bio-
informatics and computational biology packages grew to 467 and
included a number of cytometry-related toolkits that are now
widely utilized to build customHTFC data-processing pipelines.
Among these packages, several directly address the problems
of subjectivity, lack of reproducibility, and time consumption
inherent in manual FC analysis, and provide modern statistical
methods for observer-independent analysis and classification.
The aptly named flowCore package provides a basis for most of
the other cytometry-related Bioconductor tools [82]. It supplies
standardized ways of reading and saving structured FC data and
provides a model for the representation of FC data as R objects.
flowCore merges the functionality of the older R-packages prada
and rflowcyt. The package uses the flowFrame class to represent
single FC data sets functionally equivalent to a standard FCS
file (FCS version 2.0, 3.0, and LMD-style files are supported),
and the flowSet class to represent a set of logically connected FC
experiments (for instance, arranged in a multi-well plate, or as a
set of test tubes). All the traditionally employed data transforma-
tions (such as log, biexponential, arcsinh, etc.) are provided,
as well as specialized tools to apply gates of various types and
shape (polygon, ellipsoid, rectangle, etc.). The package works in
conjunction with flowViz, which offers traditional modes of FC

data visualization such as histograms, density plots, and dot
plots [83]. The package flowMeans provides an extension to the
popular k-means algorithm specifically tuned for dealing with
non-spherical cell populations [84]. flowClust, another important
R/Bioconductor toolkit, implements advanced model-based
clustering that uses multivariate t-mixture models and the
Box--Cox transformation [85,86].

flowMerge further extends the flowClust methodology, while
flowType makes use of intensity thresholding, k-means, flow-
Means, and flowClust to partition every fluorescence marker
into “positive” and “negative” populations in order to produce
automated phenotype tabulation. With a large number of
available data transformations, it is imperative to select the trans-
formation in accordance with best practices and to maintain
well-defined transformation protocols. The R/Bioconductor
package flowTrans offers help and assistance in the search for
optimal transformations for subsequent data processing and
visualization [87]. flowFP, developed byHolyst andRogers [88,89],
allows the user to generate a fingerprint-like description of the
multivariate probability distribution functions representing FC
data. Another important tool for high-throughput cytometry,
flowQ,was developed to automate the process of quality control,
which is crucial for HT experiments involving measurements of
hundreds or even thousands of samples. The flowQ Bioconduc-
tor package provides various QC functions ranging from a
simple check on number of cells measured in every well of the
analyzed plates to determination of boundary effects, discovery
of abnormal flow rates, or sudden jumps in measurement
intensities. flowQ also provides automated reporting capability.

HSC MPP
Pro-B
Pre-B I
Pre-B II

NK NKT

Naive CD8+ T
Memory CD8+ T

Memory CD4+ T
Immature B

Mature B
IL-3Ra = mature B

Plasma cell

Erythroblast
Erythrocyte

Naive CD4+ T

CMP

Monoblast

Monocyte

Pro-monocyte
Pre-DC

GMP
Plasmacytoid DC

Myelocyte

Promyelocyte

CD38mid CD3- platelet

CD38mid CD3mid platelet
CD38- CD3- platelet

Figure 4. This figure demonstrates the SPADE algorithm as applied to hematopoietic cells. This technology packages data

into regions of similarity so that it is possible to see the strength and range of interactions within a complex system. SPADE

uses a color- and shape-coded process to allow the investigator to get an overview of a very complex system.
Reproduced from [95] with permission of the American Association for the Advancement of Science.
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Since high-throughput cytometry experiments often require
simultaneous rather than sequential processing of large numbers
of files, the traditional data representation used by the cytometry
community, and also provided by flowCore, may not be ade-
quate, since it keeps the entire flowFrame object in computer
memory for data manipulation and processing. A solution to
this problem provided by the package ncdfFlowSet utilizes
netCDF (network common data form) tools. Owing to the
availability of compression and chunking features, netCDF is
an ideal format for storage of large HT cytometry experiments.
The specialized package plateCore specifically addresses the issue
of handling flow cytometry data organized in 96- or 384-well
plate formats and allows seamless integration of the previously
mentioned tools with plate-based HT cytometry [90].

SPADE (already mentioned in the context of Cytobank) is
another important algorithm available in the Bioconductor
repository. The SPADE algorithm, which was developed by
Peng Qiu in Sylvia Plevritis’ lab in collaboration with Garry
P. Nolan’s laboratory, utilizes a spanning-tree representation
of density-normalized cellular populations to visualize pheno-
types of cells in complex systems (Figure 4). The resultant trees
are much easier to interpret than a cascade of 2-D projections,
especially for multifactorial high-dimensionality data sets such
as those obtained using the CyTOF system [12,72].

Although the bulk of the described efforts in modern
HTFC analysis are related to development of basic building
blocks for automated data-processing pipelines, the important
issue of interfacing the automated processing algorithms is
also being addressed by the FC community [91,92]. iFlow is a
GUI linking R/Bioconductor packages and allows even inex-
perienced users to explore the available functions and tools
provided by Bioconductor [93]. Many of the Bioconductor
packages discussed above are listed in Table 1.

The users who feel intimidated by the requirement to program
in R/Bioconductor environment in order to build processing
pipelines for multifactorial HT cytometry assays and who would
like to use a ready-made off-the-shelf solution regrettably do not
have a wide choice. Currently there are no commercially available
FCprocessing packages which out-of-box fully embracemultifac-
torial formats and allow quick processing of large number of
samples, keeping themetadata and relationships between samples
intact. However, R-code can be used within general-use biodata-
automated processing platform such as Pipeline Pilot (Accelrys,
Inc., San Diego, CA) or freely available GenePattern from Broad
Institute [94].

The only fully integrated multifactorial flow cytometry proc-
essing system known to us is the PlateAnalyzer platform devel-
oped in Robinson’s lab [95,96]. The package was designed
employing the concept of visual programming, which can
be summarized as the process of programming by manipulating
graphical objects instead of writing textual code. The idea
dates back to the early 1970s and David Canfield Smith’s
Pygmalion programming environment, which used an icon-
based programming paradigm in which the user created,
modified, and linked together small pictorial objects, withT
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defined operators and computational actions. The concept
of a graphical design canvas allowing the use of independent
pictorial “modules” and connecting “pipes” fits very well
with the openness and complexity of multifactorial HT cytom-
etry assay development. The scientific and engineering commu-
nity is already using visual programming in tools such as
LabVIEW, visualization package AVS, or machine-learning
environment Orange.
PlateAnalyzer is de facto a visual programming toolkit allow-

ing an FC analyst to combine various processing steps, control
the input for the algorithms, and apply various processing oper-
ators graphically, interacting with the design canvas, rather than
encoding the required processing steps in a language such as R
(see Figure 5). In the PlateAnalyzer system, small icons or boxes
represent programmatic entities (fragments of functional code),
and lines (or pipes) connecting these objects allow for the flow
of information and indicate relationships between operators.
In the case of PlateAnalyzer, the user composes a data cytom-

etry data processing pipeline (termed a logic map), by creating
connections between boxes indicating various inputs, outputs,
and operators. These trees represent a series of processes of
data reduction and manipulation steps that can be applied to
the data set of interest. The innovative aspect of PlateAnalyzer

processing is that not only does it allow for visual pipeline build-
ing, but also all the designed pipelines can be utilized in a
sequential or parallel fashion. In other words, a typical HT assay
or screen that leads to collection of hundreds of data sets is proc-
essed virtually in real time, since the data sets flow through the
processing pipeline in parallel. This is possible because data
reduction and processing in multifactorial flow cytomery is a
so-called embarrassingly parallel problem, i.e., a computational
task in which there exists no dependency between parallel sub-
tasks (that is, processing of subsamples exposed to a given com-
bination of factors). This property alsomeans that PlateAnalyzer
is easily portable to a grid-computing format, which can address
the issue of processing very large screens or data mining complex
databases of cytometry assays.

5. Future applications/new opportunities

HT flow cytometry is a transformational technology that opens
up new opportunities for systems biology, especially in amultifac-
torial version. In the last couple of years, the number of samples
that can be processed in modern FC devices has grown from
just a few per hour to thousands. At the same time, the complexity
of the data has also increased owing to the increasing number of

Figure 5. Screenshot of PlateAnalyzer, an interactive analysis system for multifactorial FC data. The GUI uses a pipeline

metaphor to enable even inexperienced users access to sophisticated embedded visual-programming tools.
Reproduced from [12] with permission of International Drug Discovery and Russell Publishing.
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simultaneously measured markers as well as to the use of
multifactorial experiment-design formats. As outlined here, an
increasing number of tools are being actively developed to
process, manipulate, visualize, store, and mine these data sets.
With the availability of cellular barcoding technology and the
introduction of new high-content measurement techniques such
as mass spectrometry-based FC, the well-established field of
cytometry is likely to expand its role in systems biology. This
will enable large-scale studies of signaling networks and regulatory
pathways, discovery of new molecular targets, and quantification
of cellular responses to various activators of function, drugs, and
stress [73].

6. Expert opinion

There is little doubt that the paradigm is changing in the world of
flow cytometry. As practiced for almost five decades the technol-
ogy has been useful, is successful, and makes a significant contri-
bution to current needs. However, this traditional technology
fails to serve the needs of a systems approach to large-scale biology.
This approach demands the development of new assay designs,
new reagents, some new detection opportunities, and most defi-
nitely new analytical approaches. A few possibilities have shown
significant promise in moving toward these goals. Some are
already available but in limited use. The complications in moving
flow cytometry into the very-high-content and high-throughput
domain are significant. HT flow cannot be performed without
automated preparatory tools, which are commonly used in the
image-screening world, but not as yet in the flow world. This sit-
uation has to change.Without these automated processes, it is not
possible to establish large-scale experiments with acceptable levels
of quality control. The same robotic instrumentation currently
used in screening labs works for HT flow cytometry equally
well and should be adopted.

Detection instrumentation is changing as well. For several
years, a few groups have had the capacity to collect 15 or

more fluorescent probes simultaneously using the most
advanced instruments available. In addition, hyperspectral
tools are also advancing and have the possibility to expand
the capacity of current instruments. The one major expansion
in the field has been the CyTOF-based analysis using isotopes
of heavy metals instead of fluorescent probes. Without the
need to deal with fluorescence compensation and with the
capability to operate in a virtual digital mode, this technology
is extremely powerful, yet immature.

As these new technologiesmature, the opportunities for unique
application will increase. For example, the CyTOF has a clear-
cut advantage for the analysis of multiple populations like bone
marrow or blood, where the relationships between cell types
may be complex. For less complicated applications such as drug
screening, HT flow cytometry is an amazingly successful tool
that is sure to see growth as the advantages becomemore obvious.
Flow cytometry has been a technology neatly packaged for deca-
des. The covers are coming off the package as this powerful tool
creates newopportunities and enters theworld of systems biology.
If we constantly think of flow cytometry as a tool with current
limitations and only capable of extracting a few populations of
cells and identify an extracellular antigen or provide the status
of the cell cycle of a population, we will not see the new opportu-
nities. The next generation of flow cytometry capabilities has
stretched the limits of complexity in defining cellular relationships
as well as evaluating complicated drug--cell interactions.
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