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� Abstract
Comparison of fluorescence distributions is a fundamental part of the analysis of flow
cytometric data. This approach is applied to detect differences between control and
test sample and thus analyze a biological response. Comparison of standard test sam-
ples over time provides an estimate of instrument stability for quality control. How-
ever, application of statistical methods of distribution comparison in flow cytometry
is difficult owing to instrument noise and the complex shape of intensity distribu-
tions. We applied quadratic form (QF) as a mathematical metric for comparison of
flow cytometry histograms. QF operates on histograms as vectors and calculates the
total distance in an interbin manner using a matrix of distances between single histo-
gram bins. Euclidean interbin distance and histograms normalized to unity were
used. Critical values corresponding to 95% significance level were calculated using
Monte-Carlo simulation and single-maximum Gaussian distributions populated with
several numbers of events. The QF statistic was then validated for non-Gaussian sin-
gle-maximum distributions and multiple-maxima distributions. We determined that
the critical values for Gaussian distributions depended on standard deviations and
number of events in the compared histograms. A simple empirical function was con-
structed to characterize this dependence. Furthermore, it was verified that critical
values (corresponding to 95% significance) for non-Gaussian histograms were similar
to values for the Gaussian histograms characterized by the same standard deviation.
We applied the QF statistic to estimate the differences between histograms of DNA
content (ploidy) in cells of old and young leaf tissue of Brassica campestris. Further-
more, we quantified differences in fluorescence intensity in immunostaining of
human lymphocytes. Quadratic form (QF) provides a true (mathematical) metric for
estimation of distance between flow cytometry histograms of arbitrary shape. QF can
be applied as a statistical test for estimation of significance of the distance measure.
The respective critical values depend only on the number of events and standard
deviations of compared histograms and are not affected by distribution shape. There-
fore, applications of QF do not require assumptions concerning distribution shape
and can be easily implemented in practice. This notion was confirmed using empirical
distributions of DNA content in plant tissue and distributions of immunofluores-
cence in human cells. ' 2008 International Society for Advancement of Cytometry
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COMPARISON of fluorescence intensity distributions is a common task in the visua-

lization of flow cytometry data and the most basic and rudimentary form of analysis

of such data. Histograms are compared to verify reproducibility of sample measure-

ments and to measure differences in cellular populations. Usually only the simplest

descriptors of population, such as median, mean, geometric mean, and variance, are

employed to characterize flow cytometry histograms. However, an accurate compari-

son of any pair of histograms should involve an application of a reproducible mea-

sure of (dis)similarity, and an estimation of the statistical significance of such a mea-

sure.
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Cytometrists employ two different approaches to achieve

these goals. The first involves constructing parametric models

of the population histograms and using an estimate of % posi-

tive (or negative) cells (for specific markers) or calculating a

distance in parameter space (usually Euclidean). However,

building such a cell population model requires detailed infor-

mation (not always available) about the biology of the systems

being studied. Furthermore, owing to the large number of pa-

rameters, estimation of histogram similarity using computa-

tional models is not always straightforward. The second

approach employs some form of distance function based on

nonparametric tests such as Kolmogorov–Smirnov (KS) (1–

6), v2 (7–9), or Cramer–von Mises statistic (9,10). However,

these methods are known to be overly sensitive to the shape of

cytometry histograms and do not perform well when levels of

freedom (number of histogram bins) are numerous and popu-

lated with small numbers of events. Consequently, these tests

tend to underestimate the probability of uniqueness of discrete

data sets.

To address these problems, an alternative method based

on probability binning (PB) was introduced by Roederer

(8,11) and subsequently revised by Baggerly (12). PB-v2 uses
v2 statistic with a modified binning such that it minimizes the

maximal expected variance. PB-v2 requires that an intensity

histogram of a studied sample be compared with an appropri-

ate control. The control and the sample must be registered

under the same measurement conditions since characteristics

of the control histogram are used to construct a binning func-

tion for the sample histogram. In other words, the binning

function (and consequently the distance function) is specific

for every control/sample pair. Therefore, the PB-v2 distance

measure is not quantitative in the mathematical sense, since it

is not subadditive and does not provide ground distance

estimation (see Tables 1 and 2).

Naturally, histogram comparison tasks are not limited to

flow cytometry. Numerous histogram similarity measures

have been applied in the image-processing domain (13–18).

These include measures operating on single bins (‘‘bin-to-bin’’

methods, such as the aforementioned KS or v2, but also Kull-

back–Leibler divergence or Bhattacharyya distance) and

multiple bins (‘‘cross-bin’’ distances). The latter group is com-

prised of quadratic form with dissimilarity-matrix (QF) and

Table 1. Desirable properties of distance functions

CONDITION DESCRIPION

1. D(x,y) � 0 Non-negativity Positive definiteness
2. D(x,y) 5 0, x 5 y Identity of indiscernibles

3. D(x,y) 5 D(y,x) Symmetry

4. D(x,z) � D(x,y) 1 D(y,z) Subadditivity

5. D(x,y) 5 D(x1a,y1a) Translational invariance

o

Table 2. Summary of various dissimilarity measures discussed in this report

DISTANCE

FUNCTION SYMMETRY SUBADDITIVITY

EMPLOYS GROUND

DISTANCE FUNCTION

MULTIVARIATE

HISTOGRAMS

COMP.

COMPLEXITY FORMULA

K-S Yes Yes Yes No Low Dðh; fÞ ¼ max
n

i¼1
FðhÞi � Fðf Þi
�� ��

where F(h) is a cumulative

histogram of h.

v2 Yes No No Yes Low Dðh; fÞ ¼ Pn
i¼0

hi�fið Þ2
hiþfið Þ

QF Yes Yes Yes Yes Medium

Dðh; fÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Xn
j¼1

aijðhi � fiÞðhj � fjÞ
vuut ;

where aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ði � jÞ2

q

EMD Yes Yes Yes Yes High
Dðh; fÞ ¼

Pn

i¼1

Pn

j¼1
g hi ;fjð Þd hi ;fjð ÞPn

i¼1

Pn

j¼1
g hi ;fjð Þ ;

where d(hi,fj) denotes dissimilarity between

bins i and j of histograms h and f, and

g(hi,fj) is the cost of optimal mass

transportation between the histograms.

ORIGINAL ARTICLE

716 Quantitative Comparison of Flow Cytometric Histograms



Ln-Wasserstein distance (earth mover’s distance, EMD)

(17,18). These two nonparametric measures are true metric

functions (i.e., they satisfy the conditions of positive definite-

ness, symmetry, and subadditivity), and are able to provide a

distance estimation between multidimensional histograms.

The EMD is the most advanced, but also the most unusual

metric since it defines the distance computation between dis-

tributions as a solution to the Monge–Kantorovich mass-

transportation problem. However, the complexity of EMD is

larger than O(N3), where N is the number of histogram bins.

Table 2 summarizes the distance functions used to compare

histograms in flow cytometry or image processing.

In this report, we apply QF with (dis)similarity matrix

as a metric for comparison of flow cytometry histograms.

We also demonstrate how to calculate appropriate critical

values (i.e., the values that our similarity test must exceed in

order for the null hypothesis to be rejected) to establish con-

fidence levels associated with such a comparison. Hence, we

establish QF not only as a cytometry histogram (dis)simi-

larity metric (distance function), but also as a statistic. Sub-

sequently, we validate the QF statistic for Gaussian and sev-

eral non-Gaussian distributions. To do so, we create a set of

synthetic histograms, i.e., histograms of predefined shapes,

based on randomly drawn subpopulations of events gener-

ated in silico. By comparing various histograms based on

subpopulations drawn from a known population, we are

able to show the sensitivity and relevance of the proposed

measures of histogram similarity. Finally, we use fluorescence

intensity distributions of real biological populations to

demonstrate the applicability of the defined distance func-

tion and statistic to cases involving non-Gaussian histo-

grams. Consequently, we demonstrate that QF distance can

be reproducibly measured and expressed in a range of mag-

nitudes (i.e. on an interval scale), providing a tool for quan-

titative comparison of cytometry histograms.

MATERIALS AND METHODS

Computer Hardware and Software

All computations and Monte–Carlo simulations were ex-

ecuted using Matlab R13 (Math Works) running under MS

Windows 2000 (SP4) on a AMD Athlon XP 2800 1 (1,950

MHz) machine equipped with 1 GB DDR RAM (333 MHz).

Flow Cytometry

Nuclei isolated from young and old leaf tissue of Brassica

campestris (Goldball) were stained using DAPI (1 lM).

Fluoresence of nuclear DNA stained with DAPI (ex. 405 nm,

em. 450–480 nm) was measured using a Partec PAS III flow

cytometer. Whole human blood lymphocytes were stained

with Beckman–Coulter CD14-PE/CD45-FITC antibodies

(dilutions from 13 to 5123). Fluorescence of FITC (ex. 488

nm, em. 505–545 nm) was measured with a Beckman–Coulter

Cytomics FC 500 flow cytometer. The intensity was registered

with 10-bit precision (1,024 channels) on a linear scale

(DAPI) or logarithmic scale (FITC).

Construction of Histogram Metric

A quadratic form was used as used as a metric of the

distance between two histograms (11). The QF distance D was

calculated using the following formula:

D2ðh; fÞ ¼ ðh� fÞTAi
jðh� fÞ ¼

Xn
i¼1

Xn
j¼1

aijðhi � fiÞðhj � fjÞ;

ð1Þ

where h and f are vectors that list counts corresponding to

each of the histogram bins (channels). These vectors can be

normalized so that 0 � f ; h � 1 and
P

i hi ¼
P

i fi ¼ 1: The i

and j are histogram bin (channel) numbers in h and f, respec-

tively, and Ai
j ¼ ½aij � is the matrix of distances between the ith

and jth bins. The distance (or dissimilarity) matrix was

defined as Ai
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ði � jÞ2

q
. Alternatively, Ai

j could be also

defined as a similarity matrix 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði � jÞ2=dmax;

q
where dmax

is a maximum distance (dissimilarity) between bins. A num-

ber of other (dis)similarity distances can potentially be used

for QF calculation. In fact, one may calibrate a specific dis-

tance for a given biological experiment to ensure linear corre-

spondence between biological phenomena described by a

given change in histogram and calculated distance. A simple

example of such a flexible ground distance matrix is Ai
j with

aij ¼ � c
1�c

þ 1
1�c

exp

�
�b i�j

dmax

� �2
�

where b is a positive con-

stant, and c ¼ expð�bÞ is a normalization factor. The histo-

grams h and f had 1,024 bins in all the calculations. One may

note that the Euclidean distance is a specific case of general

QF distance where Ai
j ¼ 1 (the identity matrix). Interestingly,

v2 (and PB-v2) distance is also a special case of QF for a speci-

fic Ai
j with aij ¼ 1ffiffiffiffiffiffi

hihj
p if i5 j, and aij ¼ 0, otherwise. Examples

of various Ai
j matrices can be seen in Figure 1.

As dissimilarity metric for histograms (distributions) QF is

a smooth and monotonic function of 3rd and 4th moments

(skewness and kurtosis, respectively), which characterize dis-

tribution shape. This notion is illustrated by Supplemental

Figure 1 (available online), which shows QF distances to a

control histogram characterized by zero skewness and kurtosis

excess and but identical mean and variance (i.e., Gaussian his-

togram). To ensure mutual independence of the moment

changes, density templates were constructed using the Her-

mitte series method proposed in (19) and (20). This method

involves reconstruction of a density template (probability den-

sity function, PDF) from the series of distribution moments.

Confidence Levels and Validation of QF Statistic

By definition, a distance function must satisfy the princi-

ple of identity of indiscernibles: D(h,f) 5 0 , h 5 f. How-

ever, owing to natural biological variability, the distance

between two histograms h and f drawn randomly from the

same biological population is never zero. Therefore, a distance

below which two histograms are considered to be similar

ORIGINAL ARTICLE

Cytometry Part A � 73A: 715�726, 2008 717



enough to be treated as most likely drawn from one popula-

tion has to be estimated. A Monte–Carlo algorithm was

employed to find the 95% confidence levels for similarity of

two such histograms. First, 17 discrete Gaussian intensity dis-

tributions Yg (templates, normalized to unity) were generated:

Yg ðl; r; lÞ ¼ 1

r
ffiffiffiffiffi
2p

p eð1�lÞ2=2r; ð2Þ

where r is the standard deviation, l is the distribution aver-

age, and l represents the number of a histogram bin (0–1,023).

Each of these synthetic distributions of different r but cen-

tered in the middle of the scale was used as a probability den-

sity function to generate empirical histograms populated with

several numbers of events (from 10,000 to 90,000). Two hun-

dred fifty such histograms have been created for each of the

templates and each tested number of events. This process

represents a computer simulation of an actual cytometry mea-

surement, for which a histogram of events represents a biolog-

ical population. The pairs of histograms derived from one

template distribution (a simulation of two separate cytometric

measurements of one sample) were compared using the QF

metric defined in Eq. (1). The resulting distances formed

another distribution. 250 3 [250 2 1]562,250 comparisons

were performed for each pair of defined event numbers and

each template. Significance levels SDp for the constructed met-

ric were defined as functions of number of events (N1, N2)

and distribution width (r):

SDp ðN1;N2; rÞ ¼ PercpðDÞ ð3Þ

where r is the standard deviation associated with h and f [Eq.

(1)], p is the significance level (0.95 or 0.99), D is the vector of

all D values (distribution of distances), N1 and N2 are num-

bers of events in h and f, and Percp is the pth percentile (e.g.,

95th) of the distribution of distances.

The SDp significance levels were plotted against the respective

standard deviation (r) values for each pair of event numbers.

An empirical dependence was constructed using nonlinear

regression:

SDp ðN1;N2;rÞ ¼ UrW ; ð4Þ

where U and W are fit coefficients.

To validate performance of the QF statistic for non-Gaus-

sian distributions with a single maximum (see Fig. 2), a gener-

alized log-normal formula was used:

Yng ðv; d; lÞ ¼ 1

d
ffiffiffiffiffi
2p

p e½p3 logðlÞ�v�2=2d; ð5Þ

where d is the standard deviation, m is the distribution average,

l is the number of a histogram bin (0–1,023), and p is a power

coefficient (1 for standard and for 3 modified log-normal

distributions, respectively).

The m values were chosen so the positions of the maxima of

these non-Gaussian distributions matched the center (l) of

Figure 1. Examples of 10 3 10 (dis)similarity matrices Ai
j used in

three different QF distance metrics, which can be used to com-

pare 10-bin histograms: (A) aij ¼ exp
�
�b i�j

dmax

� �2�

b ¼ 1; ðBÞ aij ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i � jð Þ2=dmax

q
where dmax is a maxi-

mum distance (dissimilarity) between bins, and (C) aij ¼ 1

for i 5 j and 0, otherwise (Euclidean distance).
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their Gaussian counterparts. One should note that in contrast

to the latter, the former distributions were characterized by

positive skewness (0.25–0.53 for standard and 0.56–0.66 for

modified log-normal, respectively). Similarly, these distribu-

tions exhibited non-zero kurtosis excess (0.16–0.47 for stand-

ard and 0.27–0.43 for modified log-normal, respectively).

Furthermore, performance of the statistic for distributions

with multiple maxima was tested (see Fig. 2B). These distribu-

tions were generated using a sum of 2, 3, and 4 Gaussians as

templates (normalized to unity). The means of component

Gaussians [l, calculated using Eq. (2)] were separated from

one another by 64, 128, or 192 bins to mimic various degrees

of overlap of subpopulations in flow cytometry histograms.

Since these distributions were symmetric the skewness was 0.

On the other hand values of kurtosis excess varied between

21.19 and 21.85 (depending on shape). As before, these tem-

plates were randomly populated with 10,000 to 90,000 events.

The significance levels were calculated using Eq. (3)) and

plotted against the respective distribution widths.

Application of QF to Study Changes in

Brassica Leaf Ploidy
Nuclei were isolated from samples of young and old leaf

tissue in Brassica campestris (Goldball) using a procedure

described previously (21). DNA in isolated nuclei was stained

with DAPI. Fluorescence intensity was measured using a flow

cytometer. The experiments were repeated five times. From

8,000 to 10,000 nuclei were analyzed in each experiment. The

flow histograms were averaged, filtered using a median filter

(size 3), and normalized to unity to create reference fluores-

cence intensity distributions representing young and old leaf

tissue, respectively. Synthetic template distributions for tissue

of intermediate age were created by weighted averaging of

young and old leaf reference distributions. The histograms

representing randomly drawn subpopulations of the measured

samples were built by populating the template distributions

with 10,000–90,000 events. These histograms were compared

in pairs using the QF metric. In addition, the histograms cor-

responding to each of two reference distributions (i.e., corre-

sponding to either young or old leaf tissue) were compared

using PB-v2 (8), modified PB-v2 (12) (with 10 or 25 bins),

and KS (1,2,22) statistics.

Application of QF for CD45 Lymphocyte

Immunoflourescence Quantification

Whole blood was obtained from a healthy donor and

stained with CD45-FITC antibodies (dilutions from 13 to

5123). Fluorescence of FITC was measured using a flow

cytometer. 10,000 cells were registered for each experiment.

The flow histograms were filtered using a median filter (size 3)

and normalized to unity to create template fluorescence inten-

sity distributions representing populations stained with differ-

ent concentrations of antibody. The histograms representing

randomly drawn subpopulations of the measured samples

were built by populating the template distributions with

10,000–90,000 events. Histograms representing lymphocytes

stained with antibody of intermediate dilutions (from 23 to

2563) were compared in pairs using QF metric to histograms

representing strongly (13) and weakly (5123) fluorescent

cells. In addition, the histograms corresponding to either of

these latter populations were compared using PB-v2 (8), mod-

ified PB-v2 (12) (with 10 or 25 bins), and KS (1,2,22)

statistics.

RESULTS

Calculation of QF Critical Values for

Gaussian Distributions

Synthetic Gaussian-shaped histograms populated with

numbers of events ranging from 10,000 to 90,000 were com-

Figure 2. (A) Examples of single-maximum log-normal (long dash line) and modified log-normal (short dash line) template distributions.

A Gaussian distribution (solid line) is shown for comparison. All the distributions have a maximum of 512 and a standard deviation of

102.5. (B) Examples of two-maxima (solid line), three-maxima (long dash line), and four-maxima (short dash line) Gaussian template distri-

butions. The component (Gaussian) distributions (see Materials and Methods) had a standard deviation of 51.2 and separation of 192 (see

Materials and Methods).
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pared in pairs using QF metric. Critical values were established

as the 95th percentile of the distribution of QF distances

obtained from comparison of pairs of histogram built from

one model distribution (see Materials and Methods). In other

words, the 95th percentile of QF distances measured between

histograms representing a single known population (template

distribution) is considered to be the value that the proposed

statistic must exceed in order for the null hypothesis (that the

histograms are similar) to be rejected. Not surprisingly, the

critical values increased with the standard deviation of the

template distribution (Fig. 3). The values also increased with

decreasing number of events comprising compared histograms

(compare Figs. 3A, 3B, and 3C and different symbols in each

figure). The increase in the critical values with standard devia-

tion could be described using a power function of standard

deviation (lines in Fig. 3 and Supplemental Fig. 2). The multi-

plicative-fit coefficient [U, Eq. (4)] increased with decreasing

number of events in the two compared histograms (Supple-

Figure 3. Dependence of critical values (expressed as 95th percentile) of QF distance on standard deviation of Gaussian histograms (see

Materials and Methods). The first group of compared histograms (h1) were populated with 90,000 (A), 50,000 (B), and 10,000 (C) events,

the second (h2) with 10,000–90,000 events (indicated with respective symbols). Fit curves are shown using solid lines (70,000–90,000 h2
events), long dash lines (40,000–60,000 h2 events), and short dash lines (10,000–30,000 h2 events).
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mental Fig. 2A). The power-fit coefficient W [See Eq. (4)]

remained constant in the function of number of events and

standard deviation (Supplemental Fig. 2B). One should note

that fit errors were small and therefore the critical values could

be calculated in a simple and precise manner for any number

of events.

Validation of Critical Values of QF Statistics

for Non-Gaussian Distributions with a

Single Maximum

To validate the QF statistic for non-Gaussian distribu-

tions with a single maximum, a series of synthetic standard

log-normal and modified log-normal [see Eq. (5)] distribu-

tions (Fig. 2A) was generated. The synthetic histograms con-

taining 10,000–90,000 events built were from these distribu-

tions, and the critical values of the QF statistics were calcu-

lated as described earlier. As with the Gaussian case, the values

increased with decreasing number of events, and with increas-

ing standard deviation (compare symbols in Figs. 4A, 4C, and

4E). Similar dependence was obtained when the critical values

of QF statistics were calculated for modified log-normal distri-

butions (Figs. 4B, 4D, and 4F). One should note that these

dependences for non-Gaussian histograms could be accurately

described using functions originally calculated for their Gaus-

sian counterparts (populated with the same numbers of

events), as shown by the lines in Figure 5. The only exceptions

were slightly lower values obtained for modified log-normal

histograms when simultaneously the width of the template

distribution was large and the number of events small (Fig.

4F). Nonetheless, one may postulate that shapes of single-

maximum histograms do not influence critical values of the

proposed QF statistic.

Validation of Critical Values of QF Statistics for

Distributions with Multiple Maxima

To validate the QF statistic for distributions with multiple

maxima, a series of populations constructed as combinations

of 2, 3, and 4 Gaussian distributions (Fig. 2B) was generated.

As before, for the purpose of QF critical-values calculations,

histograms containing 10,000–90,000 events were built from

these populations. Once again, the critical values increased

with decreasing number of events and with increasing stand-

ard deviation (compare symbols in Fig. 5 in series ADG, BEH,

and CFI). One may note that the standard deviation was

affected more by the separation distance of the component

Gaussians than by their width. The critical values for these

multiple-maxima histograms could be accurately described

using functions calculated for their Gaussian counterparts

(populated with the same numbers of events), as shown by the

lines in Figure 5. Therefore, one may postulate that the num-

ber of histogram maxima does not influence critical values of

the proposed QF statistic. Consequently, it may be concluded

that the QF statistic is robust with respect to distribution

shape and may be used to compare arbitrary histograms.

Application of QF to Measure Ploidy Changes in

Development of Leaf Tissue

Practical application of the QF metric and statistic was

demonstrated using DNA content histograms of nuclei from

leaf tissue of Brassica campestris (Supplemental Fig. 3). As

expected, the QF distance between histograms (generated in

silico, but with biological templates) representing old tissue

control and mixed tissue population increased with the contri-

bution of the control in the mixed distribution (compare light

and dark symbols in Fig. 6). The opposite effect (a decrease in

QF distance) was observed when young tissue measurement

was taken as the reference, and compared with the mixed dis-

tribution. One should note that the symbols indicating posi-

tions of distributions of mixed populations form straight lines

in the space where the basis is formed by reference distribu-

tions of old tissue (x axis) and young tissue (y axis), respec-

tively. Furthermore, positions of the symbols were similar

when intermediate distributions were populated with large

(Fig. 6A), moderate (Fig. 6B), and low (Fig. 6C) numbers of

events. The QF critical values increased with decreasing num-

ber of events (compare panels A, B, and C in Fig. 6). Conse-

quently, the minimal significant difference (in the sense of QF

metric) between histograms increased with decreasing number

of events.

In contrast, when the PB-v2 statistic was used to perform

the task of comparison, it detected a difference (at 95% signifi-

cance level, data not shown) in 0.001% to 8.4% cases of two

histograms representing randomly chosen measurements of

biological particles from one and the same population. This

fraction of different histograms was affected by the histogram

shape, numbers of events comprised in the histograms, and

number of PB bins. One should note that at the 95% signifi-

cance level the expected fraction is 5%. Therefore, depending

on the data and the procedure of hypothesis testing, PB-v2 sta-
tistics underestimated or overestimated probability of samples

drawn from the same population being different (i.e., exhib-

ited false negative or false positive bias). Modified PB-v2 elimi-

nated false positive bias and reduced the bias range of PB.

However, this statistic exhibited false negative bias (fraction of

1.2%–3.1% of two histograms representing the same popula-

tion recognized as different at 95% significance level). This

effect also occurred also when KS was used instead of modified

PB-v2 (the respective fraction was 0.06%–2.1%).

Application of QF for CD45 Lymphocyte

Immunoflourescence Quantification

Practical application of the QF metric and statistic were

also demonstrated using immunofluorescence from human

lymphocytes immunostained with CD45-FITC antibody

(Supplemental Fig. 7). As expected, the QF distance between

histograms representing staining with concentrated antibody

and its subsequent dilutions increased with decreasing con-

centration (compare light and dark symbols in Fig. 7). The

opposite effect (a decrease in QF distance) was observed

when measurement of the most weakly stained population

(antibody dilution 5123) was taken as the reference. One
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should note that the position of a point in this figure should

be interpreted in terms of two QF values representing dis-

tances to two respective control populations. As in the case of

DNA ploidy distributions, positions of the symbols were sim-

ilar when immunofluorescence distributions were populated

with large (Fig. 7A), moderate (Fig. 7B), and low (Fig. 7C)

Figure 4. Dependence of critical values (expressed as 95th percentile) of QF distance on standard deviation of log-normal (A,C,E) and mod-

ified log-normal (B,D,F) histograms (see Materials and Methods). The first group of the compared histograms (h1) were populated with

90,000 (A,B), 50,000 (C,D) and 10,000 (E,F) events, the second (h2) with 10,000–90,000 events (indicated with different symbols). Some sym-
bols for h2 events are omitted for clarity. Fit curves for Gaussian histograms are shown using solid lines (70,000 and 90,000 h2 events),

long dash lines (40,000 and 60,000 h2 events), and short dash lines (10,000 and 30,000 h2 events).
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numbers of events. Likewise, the QF critical values increased

with decreasing number of events (compare panels A, B, and

C in Fig. 7).

As in the case of DNA ploidy distributions, when the PB-

v2 statistic was used false negative or false positive bias was

obtained (respective fraction from 0.001% to 8.7% at 95% sig-

nificance level), depending on the histogram shape, numbers

of events comprised in the histograms, and number of PB

bins. Modified PB-v2 exhibited negative bias (the respective

fraction from 1.8% to 4.2%). This effect also occurred also

when KS was used (the respective fraction was 2.0%–2.4%).

One should note that performance of modified PB-v2 and KS

was better in the simple case of immunofluorescence than in

the case of DNA ploidy histograms.

Figure 5. Dependence of critical values (expressed as 95th percentile) of QF distance on standard deviation of histograms constructed

from sums of two (A,D,G), three (B,E,H), and four Gaussian distributions (see Materials and Methods). The first group of compared histo-

grams (h1) were populated with 90,000 (A,B,C), 50,000 (D,E,F), and 10,000 (G,H,I) events, the second (h2) with 10,000–90,000 events (indi-
cated with different symbols). Some symbols for h2 events are omitted for clarity. Fit curves for Gaussian histograms (Fig. 1) are shown

using solid lines (70,000 and 90,000 h2 events), long dash lines (40,000 and 60,000 h2 events), and short dash lines (10,000 and 30,000 h2
events).
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DISCUSSION

Flow cytometry histograms are used to quickly visualize

and analyze biological responses, and to provide rapid quality

control. Although cytometry histograms are usually compared

using only geometric mean, variance, skewness, and kurtosis,

a rigorous comparison of cytometry histograms should

involve two steps: the first is quantification of (dis)similarity

between histograms (a measure of difference), and the second

is estimation of the statistical significance of this difference.

Fractions of positive/negative cells (23–25) or cells in a

specific phase of the cell cycle (24) are routinely used as differ-

ence estimators. The quantification has also been implemen-

ted using various methods of histogram subtraction (26), v2

(Chi-square) distance (7,8,12), or KS (Kolmogorov–Smirnov)

(1,22) metric. The proposed method of cytometry histogram

comparison uses quadratic form (QF) and provides a direct

estimate of distance, like the two latter methods. However, in

contrast to v2 or histogram subtraction, The QF measure satis-

fies the subadditivity condition (triangle inequality); thus it is

a true mathematical metric in histogram space. One should

Figure 7. Change in fluorescence intensity distribution of immu-

nostained lymphocytes with concentration of CD45-FITC antibody

used for labeling. The QF distances of intermediate histograms

(see Materials and Methods) were determined with respect to his-

tograms of populations stained using the highest (5123, x axis)
and lowest (13, y axis) dilutions of the antibody. The dilution is
indicated by shade of the symbols (from 23 - light gray to 2563 -

black). The distributions were populated with 90,000 (A), 50,000

(B), and 10,000 (C) events. Critical QF distance values for 13 dilu-

tion (dark gray lines) and 5123 dilution (light gray lines) were cal-

culated for 99% (dashed lines) significance levels. One should

note that the lines are close to the axes and may not be clearly

visible.

Figure 6. Change in ploidy pattern of Brassica campestris leaf tis-
sue with aging. The QF distances of intermediate histograms (see

Materials and Methods) were determined with respect to histo-

grams of old (x axis) and young (y axis) leaf tissue as the refer-
ence. The relative contribution of the reference distributions is

indicated by shade of the symbols (from 1% young – light gray to
99% young – black). The distributions were populated with 90,000
(A), 50,000 (B), and 10,000 (C) events. Critical QF distance values

for old leaf (light gray lines) and young leaf (dark gray lines) were

calculated for 95% (long dash) and 99% (short dash) significance

levels.
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note that the KS distance is the only other histogram differ-

ence estimator used in flow cytometry which offers a similar

advantage. However, unlike KS, QF employs a ground-dis-

tance estimation as an interbin measure (18). Hence, the QF

scales accordingly with histogram scale and consequently may

be calibrated to account for variable differences between bins

(owing to a nonlinear intensity scale, or in the case of compar-

ison of histograms obtained with two different flow cyt-

ometers). To our knowledge none of the previously proposed

measures offers these advantages.

The estimation of the statistical significance of histogram

dissimilarity measures has been approached before using non-

parametric tests based on Kolmogorov–Smirnov (KS) (1–3) or

v2 statistics (7,17). However, in practical applications these tests

tend to underestimate the probability with which discrete data

sets are unique (8,22). To eliminate this problem a parameter-

ized KS statistic (22) and a probability binning (PB) method

(8,12) have been proposed. One should note that the effect of

histogram shape on performance of the former method has not

been estimated (22). Also, the critical values for the PB-v2 sta-
tistic (calculated only for Gaussian distributions) proposed by

Roederer et al. were not validated for non-Gaussian histograms

(8). Furthermore, a Gaussian distribution of the PB-v2 critical
values was assumed without proof (8). This assumption may

not always be fulfilled in practice, as pointed out by Baggerly

(12). As a consequence PB-v2 may produce a larger-than-

expected rate of false positive or negative results depending on

the number of events in the compared control and sample his-

tograms. The modified PB-v2 proposed by Baggerly (12) exhib-

ited better performance with our data, yet the problem was not

completely eliminated. Moreover, PB-v2 in either version

requires binning of original data. This operation affects both

sensitivity and specificity of PB-v2 statistics, yet there is no uni-

versal procedure (applicable to histograms of any shape) to es-

tablish the optimal binning scheme. As a result, PB-v2 may pro-

duce large numerical errors when histograms have narrow max-

ima (like those presented in Supplemental Fig 3.). One should

note that any flow cytometry histogram contains data which are

already assigned to a number of discrete bins owing to digitiza-

tion of the fluorescence signal. The proposed QF statistic does

not require binning and therefore takes advantage of the full

dynamic range of cytometric intensity measurements.

It has been demonstrated using the Monte-Carlo

method that distributions of QF distances are non-Gaus-

sian. Therefore, distribution percentiles were used to calcu-

late critical values for significance levels. Alternatively, con-

fidence intervals for histogram comparisons could be esti-

mated using the bootstrap method, or by computing an

approximation of a QF distribution for a given underlying

type of histograms and matrix Ai
j . These methods are not

discussed in this report.

It was shown that the critical values (computed for signif-

icance levels from 50 to 99%) depended on histogram width

and the number of events, but did not depend on histogram

shape. Therefore, it has been concluded that one can use the

proposed QF statistic to compare flow cytometry histograms

of arbitrary shape.

To clearly demonstrate this notion, we applied our metric

to compare distributions of DNA content in plant tissue. The

histograms representing this type of sample are non-Gaussian

and contain multiple maxima, which make dissimilarity mea-

surement especially challenging. Thus, this biological material

provides a very demanding test for the distance function. Since

the only way to test the analysis method is to employ it with

data for which the correct answer is known beforehand, we fol-

lowed the procedure described by Overton (26), who used com-

puterized mixtures of real fluorescence data from positive and

negative controls to test the proposed histogram subtraction

methods. Similarly, we used histograms generated in silico, rep-

resenting various mixtures of controls, and employed QF, PB-

v2, modified PB-v2, and KS statistics to evaluate the differences.

The proposed QF statistic, in contrast to both variants of PB-v2,
does not required histogram binning, and has been proved to

operate robustly for non-Gaussian histograms. Therefore, our

method performed reliably when distributions contained several

narrow peaks as in the case of DNA content histograms of

nuclei from leaf tissue of Brassica campestris, or one non-Gaus-

sian peak as in the case of lymphocyte immunofluorescence.

One should note that PB-v2, modified PB-v2, and KS did not

offer stable and unbiased performance in these conditions.

The proposed statistic was originally constructed using

univariate histograms. However, QF may easily be extended to

multivariate case. One should note that the standard KS metric

is not defined for multivariate data. Extension of PB-v2 to mul-

tivariate histograms is mathematically straightforward (8,11),

but may be technically challenging owing to the necessity of

establishing the optimal binning scheme. Furthermore, use of a

distance matrix Ai
j in the definition of QF offers the possibility

of incorporating instrument noise models and calibration data

directly into the comparison algorithm. In contrast to cross-

bin histogram (dis)similarity measures (for instance QF or

Wasserstein distance), bin-to-bin measures (such as v2 or KS)
do not have this advantage. All of the above makes QF dis-

tance and QF statistic an ideal tool for future cytometry data-

mining systems, where users will be able to search large collec-

tions of multivariate cytometry measurements amassed with

the help of high-throughput systems for instances that are

similar to a specified query. The ability to automatically

retrieve similar measurements with arbitrary distributions,

even obtained with different instruments, will offer a dramatic

improvement in cytometry data management and analysis.

CONCLUSIONS

The objective of this manuscript was to introduce a

new quantitative metric that can be used as a tool for histo-

gram dissimilarity evaluation and measurement. Therefore,

our goal was to provide evidence that indeed QF is a met-

ric, that it behaves in a stable and predictive manner, and

that the results it produces are in agreement with the

ground truth. This can be achieved mostly through com-

puter simulations, or use of real but simple and very well

characterized biological samples. However, as with any sta-

tistical tool used in cytometry, the question can be raised

whether the proposed metric always remains relevant for
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underlying biological phenomena that cytometry experi-

ments may try to characterize. There is no easy answer to

this question. As pointed out by Young (1) and Finch (3)

while discussing the applicability of the K-S test for evalua-

tion of differences between cytometry histograms, there is

no objective mechanism for demonstrating that statistically

significant differences between features of populations meas-

ured with the help of flow cytometry indeed imply that

these differences are biologically relevant. Additionally, as it

has been often pointed out, statistically significant differ-

ences are not necessarily practically meaningful when evalu-

ating biological phenomena (3,7,12). In fact, a belief that in

the absence of any biological plausibility and prior evidence

statistical methods can provide a single number (a P-value,

a distance measure, etc.) that by itself reflects the probabil-

ity of occurrence of a certain experimental outcome is just

a common misconception (27). Although this limited paper

does not attempt an in-depth analysis of inferential reason-

ing in the life sciences, we would like to stress the impor-

tance of proper controls when any type of metric or statis-

tics is used to compare cytometry histograms. Like any

other metric, QF operates under the assumption that the

property that has been measured is biologically meaningful.

If a cytometry practitioner cannot demonstrate that indeed

it is the investigated biological differences that lead to

changes in outcome of cytometry measurements, then either

QF, as well as any other metric, becomes completely useless,

or its use is limited to description of instrument drift or

stain artifacts. Moreover, when QF is used as a metric in a

statistical test one has to remain very careful when inter-

preting the results (as with any tests performed within the

frequentist framework) to avoid overstatement of the evi-

dence against the null hypothesis (28). Finally, we encour-

age any possible adopters of the QF metric to assess the

natural biological variability of their samples and the vari-

ability added by their instruments in order to establish a

cut-off value such as a minimum important effect size

below which the difference is considered negligible, or to

design a custom empirical bin-to-bin distance matrix before

the metric is utilized to make any predictions regarding the

differences between actual samples (29).
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