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ABSTRACT

The distortion scalable wavelet based coder SPECK is widely
referred to in literature as achieving excellent coding perfor-
mance with very low computational complexity compared to
other state-of-the-art encoders. In this paper, we propose a
3D extension to SPECK designed for lossless coding of low-
SNR fluorescence microscopic multispectral images by join-
ing and encoding together different wavelet subbands. The
idea is based on an observation that in comparison to other im-
age types, fluorescence images have a larger proportion of en-
ergy concentrated in the lowest frequency subbands, whereas
the energy inside higher frequency subbands constitute a con-
siderably small portion. Also, subbands at the same level of
wavelet-transformed image are found to be highly correlated.
Consequently, encoding higher subbands by grouping them
together in a single block results in a considerable bit sav-
ing. In order to maximize the block size of coefficients that
can be encoded together, a new set type is introduced. The
proposed technique applied to test multispectral microscopic
images demonstrates a significant bit savings.

Index Terms— 3D SPECK, fluorescence imaging, multi-
spectral imaging, microscopic image encoding, low-SNR im-
age encoding.

1. INTRODUCTION

Optical molecular imaging provides a non-invasive measure-
ments of biological processes in living organisms. A key
technique for molecular imaging is fluorescence microscopy,
and its advanced version, multispectral (multiband) fluores-
cence microscopy (MFM). MFM techniques are being widely
used to study cell cycle, gene expression, dynamic interac-
tions among cells and cellular components, signaling path-
ways, and many other cellular processes [1]. However, imag-
ing of live cells or tissues is difficult owing to possible cyto-
toxicity of fluorescent labels and phototoxicity of the imag-
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ing process. Therefore, the quality of acquired images is de-
termined by limited excitation power, as well as the limited
amount of fluorescent labels which can be used in live-cell
conditions. In consequence, the photon budget in live cell
imaging is usually poor. Owing to the limited number of pho-
tons which can be collected, the photon count per pixel in
live-cell MFM is usually quite low. This fact as well as the
presence of noise (photon noise, Fano noise, and fixed pattern
noise of the detectors) means that the collected digital images
suffer from a low SNR [2].

Multispectral imaging has broader applications than
MFM. Due to smoothness of spectral response a very high cor-
relation exists between different bands of MFM images. Dis-
crete wavelet transform (DWT)-based methods have proven
quite successful in exploiting correlation-related redundan-
cies. Several DWT-based techniques have been developed
during the last decade, and the most successful of them
are codecs based on Shapiro’s EZW [3] and its refinement
by Said et al. as SPIHT [4]. Pearlman et al. proposed a
low-complexity block-based alternative called SPECK [5]
. The algorithm shows compression performance compara-
ble to SPIHT with faster encoding compared to both SPIHT
and EBCOT for 2D images [6]. Extension of 2D image-
compression techniques to 3D has been investigated in the
literature for a wide range of applications. In particular, Kim
et al. have proposed a modified SPIHT to compress video
sequences [7]. Dragotti et al. applied wavelet transform
along spatial axes and KLT along the spectral axis before
coding the coefficients by SPIHT algorithm [8]. Pearlman
et al. proposed an extension to block-based low-complexity
SPECK by encoding the inter-band redundancies exploited
by three-dimensional wavelet transform [9]. Finally, Khelifi
et al. demonstrated extensions of 2D SPIHT and 2D SPECK
encoders to jointly encode two consecutive bands that are
independently decomposed using 2D wavelet transform [10].
Their method, although reduces the computational complex-
ity, also limits the algorithm’s ability to exploit interband
redundancies.

Herein we present a new lossless low-complexity SPECK-
based algorithm designed for MFM images. The key idea is
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to exploit the interband redundancies of these images by en-
coding the maximally correlated wavelet subbands as a sin-
gle block. The blocks are split to maximize the intra-block
correlation within the newly formed children blocks. The
method has been demonstrated to provide significant improve-
ment over state-of-the-art coders such as SPIHT, SPECK, and
3DSPIHT, while maintaining modest computational complex-
ity.

2. THE SPECK ALGORITHM: AN OVERVIEW

The section provides a brief summary of the original 2D
SPECK algorithm proposed by Pearlman et al. [5]. Let χ
be an adequately wavelet-transformed 2D image represented
by an indexed set of coefficients {ci,j}. χ is defined to ex-
hibit hierarchal pyramidal structure characterized by different
levels of decomposition. The algorithm maintains a set of
three lists: list of significant pixels (LSP), list of insignificant
pixels (LIP), and list of insignificant sets (LIS). At any stage,
LIS contains the sets of type S of different sizes that have
not yet been found to be significant. LSP contains coeffi-
cients/sets found to be significant. If a set S of size 1 × 1 is
found significant in LIS, its sign is encoded and the block is
moved to LSP. Sets of type I are similarly evaluated against
the current threshold; if the set is found to be significant it is
split into three sets of type S (S1, S2, and S3) and a set of
type I . The newly formed S sets are evaluated against the
current threshold n, and the significant subsets are iteratively
partitioned into subsets of 4, while insignificant subsets are
moved to LIS. Finally, during the refinement pass the n-th
most significant bit of each entry in LSP is encoded, except
those coefficients that have been added to the list during the
last sorting pass.

3. PROPOSED LOW-COMPLEXITY 3D SPECK: THE
METHODOLOGY

A strong correlation that exists among different spectral
bands of MFM images can result in a huge bit savings in
both storage and transmission. Wavelet transform-based tech-
niques have been found very useful in effectively exploiting
correlation-based redundancies. Our method exploits these
redundancies by collectively encoding correlated wavelet sub-
bands at the same level of decomposition as a single block.
The idea is motivated by the fact that a great proportion of en-
ergy inside a 3D wavelet-decomposed image is concentrated
in the lowest-frequency subband cube. In addition, the num-
ber of significant coefficients in higher frequency subbands
is sparse, and significant coefficients in these subbands are
concentrated in a closed neighborhood. In order to ensure
that the maximum number of insignificant coefficients are
encoded together, in addition to type-I and type-S of tra-
ditional SPECK, an intermediate type Y is introduced that
divides subbands at the same level of decomposition into two

subblocks instead of splitting them into individual subbands.
These intermediate Y -type sets address redundancies in those
block subbands where significant coefficients are sparse and
concentrated in fewer subbands in a closed neighborhood.

Let χ be an adequately wavelet-transformed multispectral
image represented by an indexed set of coefficients {ci,j,λ}.
The proposed algorithm divides χ into sets of three types: sets
of type S forming the root of the pyramid, sets of type I ob-
tained by chopping off S sets from χ, and intermediate sets
of type Y obtained through the unequal disseverance of sig-
nificant I sets. Before elaborating on the methodology, let
us define a size measure for Y -type sets to be the number of
wavelet subbands inside a Y set: size (Ym) = C (Ym) =
|Ym |. |Ym | can be either 3 or 4. Let us also define an in-
dicator function to mark the significance of a block of coef-
ficients. A set of coefficients is considered significant at the
n-th threshold level if for any set of pixels T

γn (T) =

{
1 if 2n ≤ max|ci,j,λ| ∈ T

0 otherwise
(1)

The algorithm consists of four steps: the initialization step,
the sorting pass, the refinement pass, and the quantization
step. The pseudocode for the new 3D-SPECK algorithm is
presented in Algorithm 1. The pseudocode calls three func-
tions, ProcessS(Sm), ProcessI(Im), and ProcessY(Ym), that
are detailed in Algorithm 1. Sets S are treated in the same
way as described in Section 2 for the original SPECK. After
testing all sets of type S, a set of type I is processed by testing
it against the current threshold n. If the set is found to be sig-
nificant it is divided into three subsets—one set of type I and
two unequal sets of type Y . Of the two Y sets, one consists of
3 lower subbands at the lowest decomposition level in I , and
the second consists of 4 higher subbands. Fig. 1 illustrates
this partitioning scheme. It is worth mentioning that the cur-
rent partitioning order is suggested by performance analysis
of the algorithm on a limited number of MFM images. The op-
timal partitioning of I sets must be investigated further. The
idea behind this partitioning takes advantage of the fact that
the concentration of energy decreases down the pyramid; also
it is quite likely in MFM images that a set I if found signifi-
cant has only a single (or very few) significant coefficient(s).
In addition, as mentioned in previous sections, owing to the
high correlation of spectral subbands higher-frequency sub-
bands will have fewer significant coefficient. Therefore, Y
subsets are created such that 3 low-frequency subbands that
have a greater chance of possessing significant coefficients
are coded together, while the 4 higher spectral frequency sub-
bands are encoded together; the sparsity of significant coeffi-
cients is greater in these subbands. Sets Y are tested against
the current threshold n, and if a set is found insignificant it
remains type Y ; otherwise, it is divided into |Ym| subsets of
type S. The new subsets are tested for significance like the
previous S-type sets.
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Fig. 1. Successive partitioning of significant subsets from set of type I to sets of type I: (from left) I is the initial set, the set
is than split in the middle figure into three subsets: two subsets of type Y and one subset of type I , and finally the right-most
figure shows Y sets split into S subsets.

(a) (b)

(c) (d)

Fig. 2. (a) The sixth band of the original Cells image. (b), (c),
and (d) show the same band encoded at 0.55 bpp, 0.25 bpp,
0.05 bpp respectively using the proposed method (c) Coded
Image at 0.25 bpp (d) Coded Image at 0.05 bpp.

After all sets have been processed against the current
threshold, the algorithm initiates the refinement pass. The
threshold is lowered each time for subsequent iterations
of sorting and refinement pass until the desired bit rate is
achieved.

4. NUMERICAL RESULTS

To assess the performance of the proposed encoder, several
tests have been preformed on a number of 16-band MFM im-
ages (each band was 8 bit, 512 × 512 pixels). We used 9/7
biorthogonal filter for wavelet decomposition. Five levels of
decomposition were carried out along the spatial as well as
the spectral dimension. Fig. 2 highlights the performance of
the proposed algorithm by comparing a single band of multi-
spectral fluorescence image at different bit rates using the pro-

Coding Method PSNR (dB)
0.05 bpp 0.10 bpp 0.25 bpp 0.55 bpp

Cells Image 512 × 512 × 8

Proposed Method 22.91 23.92 31.65 36.31
2D SPIHT 18.27 20.31 27.61 32.91
3D SPIHT 23.49 24.91 29.54 34.33
2D SPECK 20.72 22.26 29.90 35.29

Thymus Image 512 × 512 × 8

Proposed Method 23.67 25.81 29.31 34.93
2D SPIHT 19.09 21.08 24.20 27.49
3D SPIHT 24.41 25.33 27.38 32.33
2D SPECK 14.73 17.77 20.14 23.15

Dish Image 512 × 512 × 8

Proposed Method 22.62 25.11 27.89 32.77
2D SPIHT 20.38 22.80 25.16 25.99
3D SPIHT 23.78 25.98 27.01 31.11
2D SPECK 19.98 22.75 24.89 28.86

Table 1. Performance comparison against other techniques.
Average PSNR over all bands is reported.

posed method. The proposed method has also been compared
with related state-of-the-art methods, namely SPIHT[4], 3D
SPIHT[7], and 2D SPECK[5]. The results presented in Table
1 demonstrate that the proposed algorithm outperforms con-
temporary SPIHT- and SPECK-based techniques in terms of
bit rate per quality assessment measure (PSNR). At lower bit
rates 3D SPIHT performs slightly better than the proposed
method, because of the progressive encoding of coefficients
in the 3D hierarchal tree, but the overall performance of the
proposed method is much better.

5. CONCLUSION

A low-complexity modification of conventional wavelet-
based SPECK encoder, developed for compression of bi-
ological multispectral images, is proposed. The proposed
concept is based on the observation that owing to the nature
of multispectral fluorescence imaging, significant coefficients
in higher subbands of wavelet decomposed images are sparse;
therefore, encoding higher subbands as a single block while
optimizing the block size will result in significant bit savings.
The proposed method compares favorably with contemporary
SPECK- and SPIHT-based methods both in terms of bit rate
and computational complexity.
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Algorithm 1 Pseudocode for the proposed algorithm

1: n ← [log
2
(max (χ (i, j, λ)))].

2: Partition χ into two sets I and S .
3: Add the coarsest subband of χ to S .
4: I ← χ − S .
5: LIS ← S .
6: for each set Sm ∈ LIS do
7: ProcessS(Sm) in the increasing order of set size.
8: end for
9: if I �= ϕ then

10: ProcessI(Im)
11: else if Y �= ϕ then
12: do ProcessY(Ym).
13: end if
14: for each entry in LSP except for those that have been in-

cluded during the last sorting pass do
15: output the nth most significant bit of |Ci,j,λ|.
16: end for
17: n ← n − 1 and go to step 6.

function ProcessS(Sm)
1: Output γn(Sm) ∈ S.
2: if γn(Sm) = 1 then
3: if |Sm| = 1 × 1 then
4: if γn(Sm) = 1 then
5: output the sign of Sm . Remove Sm from

LIS and add to LSP.
6: else
7: Partition γn(Sm) into four equal subsets,

ϑ(Sm) for k ∈ 1, 2, 3, 4. Add ϑ(Sm) into
LIS and remove Sm from LIS. ∀ Sk ∈
ϑ(Sk) ProcessS(Sk)

8: end if
9: end if

10: end if

function ProcessI(Im)
1: Output γn(Ii) ∈ I .
2: if γn(Ii) = 1 then
3: Partition (Ii) into two unequal (Y ) subsets and one

(I ) subset as shown in Fig. 1.
4: end if

function ProcessY(Ym)
1: Output γn(Im) ∈ I .
2: if γn(Im) = 1 then
3: Partition Im into two unequal Y subsets and one

Isubset as shown in Fig. 1.
4: end if
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