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Microscopic imaging is one of the most common techniques for investigating biological
systems. In recent years there has been a tremendous growth in the volume of biological
imaging data owing to rapid advances in optical instrumentation, high-speed cameras
and fluorescent probes. Powerful semantic analysis tools are required to exploit the full
potential of the information content of these data. Semantic analysis of multi-modality
imaging data, however, poses unique challenges. In this paper we outline the state-of-
the-art in this area along with the challenges facing this domain. Information extraction
from biological imaging data requires modeling at multiple levels of detail. While some
applications require only quantitative analysis at the level of cells and subcellular objects,
others require modeling of spatial and temporal changes associated with dynamic bio-
logical processes. Modeling of biological data at different levels of detail allows not only
quantitative analysis but also the extraction of high-level semantics. Development of pow-
erful image interpretation and semantic analysis tools has the potential to significantly
help in understanding biological processes, which in turn will result in improvements in
drug development and healthcare.
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1. Introduction

Understanding complex biological systems requires thorough information about
their basic building blocks, like molecules, genes, proteins, and cells [1, 2].
Microscopic imaging is one of the most common techniques for these multi-level
investigations. Various microscopy techniques are used to image the response of
cell populations under different experimental conditions [3]. Traditionally, biologists
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image biological samples and visually examine them to understand biological
phenomena. This approach is slow, prone to human error, and unsuitable for quanti-
tative comparison of results across experiments [4]. With the recent proliferation of
fast cameras, sophisticated microscope optics, and fluorescent dyes, there has been
a tremendous growth in the volume of imaging data. High-content screening (HCS)
approaches have been developed that combine sophisticated optics with automation
techniques for imaging large populations of cells under different experimental condi-
tions [5]. These technologies generate unprecedented amounts of biological imaging
data.

Most biological processes have spatio-temporal semantics associated with them
[6]. Extracting these semantics from large sets of images in an automated and quan-
titative manner is the key to unraveling complex biological phenomena. Semantic
analysis in the context of biological imaging refers to the development and use
of image-processing and knowledge-extraction tools and algorithms for automated
image interpretation. This interpretation may require different levels of process-
ing, including low-level image processing like segmentation and feature extraction
and high-level processing for extracting, representing, and modeling spatio-temporal
semantics of biological objects. Semantic analysis of these spatio-temporal data has
the potential to significantly improve the process of biological discovery and drug
development. The volume of these data, however, gives rise to daunting computa-
tional and data management challenges. These include the development of powerful
and robust tools for extraction of low-level features as well as high-level spatio-
temporal semantics, mining such data to identify hidden patterns, and database
management systems for efficient storage and retrieval. In this paper we outline the
challenges that need to be addressed for semantic analysis and management of such
data, in order to exploit the full potential of high-throughput imaging technologies.

Different biological applications have different requirements in terms of seman-
tic analysis [7]. While some require only fluorescence intensity quantification, others
require cell tracking and identification of spatio-temporal events like cell division
and motility [6]. This heterogeneity in the semantic computing requirements of bio-
logical applications calls for multiple levels of modeling. Such modeling approaches
can be highly beneficial in many ways. Firstly, they help in extracting from bio-
logical data objective and quantitative information that can be compared across
experiments. Secondly, they improve the searching and retrieval of such data by
allowing conceptual and semantic queries. Thirdly, they make the extracted knowl-
edge available for design of future experiments.

The rest of this paper is organized as follows. Section 2 introduces different
optical microscopy modalities that are used to generate biological images. In Sec. 3,
we discuss data modeling and knowledge representation issues for biological imag-
ing data. Section 4 describes some successful applications of semantic analysis in
the domain of biology. Section 5 presents a generic component-based system for
knowledge-based semantic analysis of biological imaging data, and Sec. 6 summa-
rizes the paper.
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2. Optical Imaging Modalities

Various optical imaging modalities are used for biological microscopy [3, 8]. These
can be divided into two-dimensional and three-dimensional techniques. 2-D tech-
niques include all forms of traditional wide-field microcopy, with multiple ways of
creating contrast, such as bright-field, dark-field, phase-contrast, differential inter-
ference contrast, and fluorescence. Bright-field microscopy is the simplest mode of
imaging, in which the contrast is created through the absorptive properties of a nat-
urally colored or stained specimen. The dyes used in bright-field imaging selectively
absorb a portion of the light passing through. However, most thin biological spec-
imens if unstained do not absorb enough light to yield useful contrast. Dark-field
and phase-contrast microscopy aim at increasing contrast in unstained samples. In
dark-field microscopy, oblique light rays produced by a specialized condenser illumi-
nate the sample in a way which allows only the light diffracted by the specimen to
enter the objective. In consequence, the sample appears white against a dark back-
ground. The phase-contrast technique takes advantage of the fact that unstained
biological specimens act as phase objects, i.e. they retard the wave of light which
passes through. Although human eyes or traditional cameras cannot detect these
phase differences, a modification in microscopy optics is capable of converting the
phase change into visible differences in amplitude. Differential interference contrast
(DIC) is another technique relying on optical path differences and phase gradients
experienced by light passing through a transparent specimen. Phase-contrast and
DIC microcopy are mostly used to study living cells and tissue.

Fluorescence microscopy is probably the most important imaging technique
employed by cell biologists. It relies on a huge number of natural and synthetic
fluorescent labels capable of staining various regions of cells and tissue. These lumi-
nescent probes can be linked with monoclonal antibodies or other biological carri-
ers, providing very high specificity of staining. Apart from specificity, fluorescence
microscopy offers unparalleled sensitivity, being able to detect the presence of a
single fluorescent molecule!

The majority of 3-D microscopy techniques used in cell biology are based on
modified versions of the fluorescence detection modalities. Confocal fluorescence
microscopy — arguably the most significant advance in optical microscopy in the
20th century — uses a pinhole in the light path to reject most of the out-of-focus
light. The most commonly used variation of confocal microscopy is based on point
scanning. In this approach, a laser beam, guided by galvanometer-driven mirrors,
is deflected into a microscope objective and focused into the specimen. The fluores-
cence emitted from the specimen passes through the microscope objective, is focused
onto a confocal pinhole, and is collected by a photon detector. Light that is emitted
from locations either in front of or behind the focal point in the object is focused
either in front of or behind the detector pinhole, and does not contribute to the mea-
sured signal. This way a thin optical slice (section) of the sample can be obtained.
A 3-D representation of the specimen is generated by collecting a large number of
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Fig. 1. 3-D confocal image of a liver cancer cell embedded in an extracellular matrix of collagen
fibers.

such slices. Coupled with digital reconstruction techniques, confocal microscopy can
help in better visualization of data, as shown in Fig. 1.

Multiphoton microscopy (MPM) represents another 3-D application of fluores-
cence imaging. MPM uses a laser to trigger a localized nonlinear fluorescence exci-
tation process in which multiple low-energy photons can cause the same excitation
typically produced by the absorption of a single high-energy photon. By focusing
laser and raster scanning across a sample, MPM builds a 3-D map of intensities,
collecting the fluorescence signal from a single voxel at a time. MPM has become the
technique of choice for fluorescence microscopy of thick, highly scattering biological
samples.

3. Multi-Layered Semantic Analysis

In recent years, quantitative imaging has been extensively used for observing bio-
logical phenomena [9]. The focus has traditionally been on extracting simple image
and object features like size, intensity, etc. For example, the cell cycle is studied
using a DNA-specific dye like a Hoechst dye [9]. Dividing cells generally have higher
amounts of DNA than do non-dividing cells. A histogram of the amount of DNA
is used to estimate the number of dividing and non-dividing cells. A representative
image of a population of bovine aortal endothelial cells is shown in Fig. 2 and the
corresponding histogram of intensity in the Hoechst channel is shown in Fig. 3.
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Fig. 2. A representative image of bovine aortal endothelial cells showing nuclear dye in white and
cytoplasm dye in gray.

Fig. 3. Histogram of intensity in Hoechst channel for bovine aortal endothelial cells.
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Such simple analysis, though useful for some cases, is not adequate for many appli-
cations where the dynamics of large populations of cells are to be studied. Such
applications require extraction of high-level spatio-temporal semantics. Information
content in biological images includes cell shape, texture, size, and location, as well
as changes in these parameters as time progresses. Automatic image interpretation
tools and bio-image database management systems are needed for efficient analysis
and management of such data. Extraction of high-level semantics from biological
images requires modeling of images at different levels. A multi-layered architecture
for modeling of biological images is shown in Fig. 4. We use this figure to elabo-
rate current approaches and challenges at each layer. The lower two layers of this
architecture deal with object detection, tracking, and recognition, which are the
most computationally intensive tasks. The upper three layers deal with high-level
semantic interpretation of images and representation of spatio-temporal knowledge.

3.1. Object detection and tracking layer

This layer has two major functions. Firstly, it preprocesses the data to remove
undesirable artifacts, and separates objects of interest from the background using
segmentation algorithms. Secondly, it tracks the movements of biological objects in
time-lapse images.

3.1.1. Preprocessing and segmentation

Imaging instruments are composed of different components. These include micro-
scopes, cameras, filters, and lenses. All of these components add noise to biological
images. Illumination may also vary from one image to another when a large popu-
lation of cells is imaged [9]. Images need to be processed to remove this noise. The
variable illumination problem for microscopic imaging has been addressed by pro-
viding methods for illumination normalization [9]. Microscope optics blur the image
as a result of the limited aperture of the microscope objective [10]. Deconvolution

Knowledge integration and representation layer 

Temporal analysis and modeling layer 

Spatial analysis and modeling layer 

Object recognition layer 

Object detection and tracking layer 

Fig. 4. Multi-layered architecture abstraction.
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algorithms attempt to remove this blur and improve the contrast in microscopic
images. Numerous deconvolution algorithms have been proposed in the literature
[10, 11]. For time-lapse or multi-channel imaging, image registration issues also need
to be addressed. Automated as well as interactive image registration algorithms have
been proposed for this purpose [12].

The next step after preprocessing is the separation of objects from the
background. Segmentation of biological images is a hard problem because of many
complicating factors [9, 13]. There are large inter- and intra-cell variations. Pixel
intensities can vary widely within cells. Different types of cells have very differ-
ent shapes: for example, red blood cells are somewhat round whereas neurons and
microtubules are long and branching. Even cells of the same type can look very dif-
ferent when imaged using different microscopic modalities. Poor contrast between
objects and background is another complicating factor for many imaging modal-
ities. In fluorescence imaging, different staining protocols can significantly change
the appearance of cells. Touching and overlapping cells also complicate the prob-
lem. Different approaches have been taken for biological image segmentation in the
literature [14–20]. Approaches based on deformable templates and active contours
have been proposed in [15, 16]. Such techniques generally require an interactive
initialization step and have poor performance for overlapping cells. For fluorescence
imaging, it is generally easier to segment nuclei compared to cytoplasm because of
the relatively uniform appearance and separation of nuclei from each other. Many
algorithms segment cells by first segmenting the nuclei and then using them as seed
points for segmenting cytoplasm. Jones et al. present a segmentation algorithm that
uses nuclei as seed regions and locates the boundaries of cells by finding Voronoi
regions around seed regions, guided by local image properties like edges [17]. Cell
and nuclei segmentation algorithms based on the watershed transform have also
been proposed [18–20]. Watershed algorithms generally suffer from the over seg-
mentation problem and require a post processing step for improving segmentation
accuracy.

Despite many efforts, accurate and fully automated segmentation still remains
a challenge. As fluorescence imaging provides better contrast between objects and
background, segmentation algorithms for fluorescence imaging generally perform
better than those for bright-field and other imaging modalities. However bright-field
imaging is more appropriate for many applications that require cells to be imaged for
extended periods of time, as staining can have cytotoxic effects. Automated analysis
of such data requires robust segmentation algorithms for all imaging modalities. As
the shape and appearance of cells vary widely from one cell type to another and from
one imaging modality to another, it is not likely that a single algorithm will perform
well for all types of cells imaged using different modalities. It is therefore essential to
develop segmentation algorithms tailored for specific applications. Such algorithms
need to be robust and fully automated so that large sets of images can be quickly
analyzed. Moreover, test data sets and performance measures need to be developed
for objective comparison of different segmentation algorithms. Segmentation is the
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first step for quantitative analysis and knowledge extraction. Defects at this level
seriously affect the whole knowledge extraction process. Developments in this area
would therefore have a significant impact on the overall semantic analysis process.

3.1.2. Object tracking

Extraction of temporal information requires tracking objects of interest in time-
lapse images. Tracking of biological objects is a challenging problem and has
attracted significant attention because of its use in many biological applications [13,
21–25]. The challenges arise from the fact that biological objects are not uniform,
have large inter- and intra-object variability, and keep changing their shape with the
passage of time. Tracking in the perspective of biological systems generally focuses
on two themes, namely the tracking of particles like quantum dots and intracellular
molecules [21], and the tracking of individual cells [13]. Different algorithms have
been developed for these tracking applications. Cheezum et al. present a compari-
son of four particle-tracking algorithms in [22]. These include algorithms based on
Gaussian fit, sum-absolute difference, centroid, and cross-correlation. They conclude
that all of these algorithms perform poorly at very low signal to noise, although
Gaussian fit performs relatively better than the others. Algorithms for cellular track-
ing include deformable models, mean shift, image level sets, and correlation-based
algorithms. Deformable models have received relatively more attention than other
methods as cells keep changing their shape over time [23–25]. Zimmer et al. present
a comparison of some cell-tracking algorithms in [13]. They note that most of these
algorithms require some level of user interaction for initialization. This interaction
slows down the tracking process. Moreover, these algorithms are prone to serious
tracking errors and thus require validation by an expert.

While it may be relatively easier to segment and track cells in fluorescent
microscopy, it is very difficult to do so satisfactorily in bright-field microscopy
because of poor contrast between cells and background. The problem of reliable
unsupervised tracking of a large number of cells imaged using different imaging
modalities is still unresolved. Extraction of spatio-temporal information from time-
lapse image sequences will require the development of fully automated and robust
tracking algorithms. Standardized test sets are also needed for objective comparison
of different tracking algorithms. As in the case of segmentation, application-specific
tracking algorithms are needed that meet the requirements of a given application.
Moreover, integration of domain knowledge about the spatio-temporal dynamics of
the objects with tracking algorithms can improve their performance.

3.2. Object recognition layer

This layer addresses the problem of identifying objects in the images. It extracts
different features of objects and uses pattern recognition algorithms for identifying
objects of interest. Templates of objects of interest are provided beforehand to train



May 3, 2007 12:52 WSPC/241-IJSC - SPI-J091 00003

Semantic Analysis of Biological Imaging Data: Challenges and Opportunities 75

the classifiers. The classifiers learn the object features and use them for classification
of objects in image sets.

3.2.1. Feature extraction

An important step in image understating and interpretation is the extraction of
image and object features. Different types of features can be used for this purpose.
Simple features like size, area, and intensity, though useful for simple applications,
have limited utility for more challenging applications like the ones described in
Sec. 4. More complex descriptors such as texture, shape moments, and moment
invariants can be useful for such applications. Image features can generally be
divided into two categories, global and local. Global features, such as color his-
tograms, transform the whole image into descriptors. Local features are generally
based on objects inside the image. As most applications in cellular imaging and
biological imaging in general are based on objects in the images, local features are
more important. Most currently available cellular image analysis packages provide
only simple features like size, intensity, roundness, etc. More complex features like
boundary descriptors, region descriptors, and texture have been successfully used for
protein localization and bacterial colony identification [26, 27]. Most boundary and
region descriptors like moments and moment invariants have high computational
cost; hence feature extraction becomes a bottleneck for high-throughput applica-
tions. It is therefore desirable to have fast implementations of these algorithms.
Challenging biological applications will require development of new, fast, and more
powerful features. This will require collaboration among biologists and image pro-
cessing, computer vision and computational geometry experts.

3.2.2. Object recognition

The objective of many biological applications is to identify cells, proteins, or other
biological objects. These objects are usually defined in terms of their features. Pat-
tern recognition algorithms are employed to identify these objects using their fea-
tures. Pattern recognition is a mature field and numerous algorithms have been
proposed for this purpose [28, 29]. These include decision trees, Bayesian classifiers,
maximum likelihood classifiers, support vector machine (SVM) classifiers, and neu-
ral networks. In biological imaging, statistical pattern recognition techniques have
been used for many successful applications. A neural network classifier capable of
recognizing major sub-cellular proteins is reported in [26]. Classifiers for automated
phenotyping have also been reported [30]. Our group has successfully used an SVM
classifier for bacterial colony classification [27]. As noted by many experts in pattern
recognition, no single algorithm performs best for all different scenarios [28]. It is
therefore important to test different classifiers for a given application and to choose
the one that meets the requirements of the application in terms of classification
accuracy and speed.
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3.3. Spatial analysis and modeling layer

Spatial events provide useful information about biological processes. The spatial
analysis and modeling layer deals with two main issues. Firstly, it identifies pat-
terns in the spatial distribution of cells, for example, neurons in brain tissue. Such
patterns provide information about the behavior of cells. Changes in these patterns
may indicate disease states [31]. Algorithms for spatial distribution try to find pat-
terns in the spatial distribution of cells. These algorithms generally develop the
neighborhood graph first and then analyze the spatial distribution using this graph
[31]. Neighborhood graphs are developed using Voronoi diagrams and Delauny tri-
angulation, or using methods based on k-nearest-neighbor graphs or other appro-
priate approaches. Spatial analysis is then carried out on these graphs using graph
matching algorithms. Such analysis yields information about the patterns in spa-
tial arrangement of cells in tissue and about the changes in their distribution in
response to different diseases or abnormalities. Secondly, this layer deals with inter-
object spatial relationships. Spatial relations among subcellular compartments and
different particles and proteins provide information about the localization of these
objects inside cells. For example, finding the cellular compartment in which spe-
cific drugs or nanoparticles are localized requires establishing spatial relationships
between different biological objects in the image. Such spatial modeling also helps
in content-based retrieval of biological imaging data. Minimum bounding rectangle
(MBR) is the most commonly used spatial representation for objects. MBR, how-
ever, is not very accurate, as shown in Fig. 5. Convex hull- and exact outline- based
representations along with polygon intersection tests can be used for more accurate
spatial analysis of biological objects [32].

Although algorithms for spatial analysis exist, newer and faster approaches will
be required for large biological image repositories to cope with the large volume of
data. Moreover, biological applications vary in their demands for speed and accu-
racy. While accuracy may be the most important factor for small-scale biology,
speed is also important for high-throughput imaging. It is therefore required that

(a) (b) (c)

Fig. 5. Different spatial representations. (a) MBR, (b) Convex hull, (c) Exact outline.
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the analysis algorithms be able to make trade-offs between speed and accuracy so
that they can be adapted to the requirements of particular biological applications.

3.4. Temporal analysis and modeling layer

Biological cells and organisms are dynamic systems that evolve over time. Moni-
toring changes in different observable cell parameters such as size, color, shape and
texture can help detect and quantify cellular events. For example, time-lapse imag-
ing has been used to study the cell cycle [33]. Similarly, temporal texture parameters
have been used for protein localization [34]. Analysis of spatio-temporal information
associated with cellular systems requires development of models for spatio-temporal
knowledge representation. Models based on finite state machine (FSM) and Petri-
nets have been proposed for such analyses [32]. The FSM approach models cells in
terms of their attributes like size, shape, texture, and spectrum. Spatio-temporal
events in this approach are modeled in terms of the participating objects along
with specific values of their attributes and spatial relations between them. This
model is able to capture a variety of spatio-temporal biological events. For example,
changes in the morphology of cells can be modeled by the changes in their observ-
able attributes. Similarly, events like cell division, apoptosis, and phagocytosis can
be modeled in terms of attributes of cells and their spatial relations. For more com-
plicated events, for example multi-threaded events involving multiple objects with
temporal constraints between constituent events, Petri-nets are used. A Petri-net is
a directed bipartite graph which is used for modeling distributed systems. A Petri-
net contains place nodes, transition nodes, and directed arcs. Place nodes contain
information about events and may be composed of simpler events. They may also
contain delay nodes to express timing constraints among different events. This way,
spatio-temporal constraints for a complex sequence of events can be represented.

Spatio-temporal modeling of biological images is crucial for extracting high-level
semantics from such data, which in turn is essential for understanding biological pro-
cesses. While significant work has been done on low-level image processing, develop-
ment of models for extracting high-level semantics from biological images has lagged
behind. There is an urgent need for developing powerful models that can capture
the semantics of a wide variety of biological objects and events. Development of such
models will require interdisciplinary collaborations between biologists and experts
from computer vision, multimedia, and knowledge representation communities.

3.5. Knowledge integration and representation layer

This layer deals with the integration and representation of spatio-temporal knowl-
edge extracted by lower layers. The extracted spatio-temporal knowledge can be
analyzed by data mining algorithms to discover association rules and hidden pat-
terns in this data. This conceptual information can then be stored in a database
along with spatial and temporal information. This high-level knowledge can subse-
quently be used for developing simulation models for biological processes.
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The biological data that are routinely collected contain much more information
than currently available analysis tools can extract or analyze. Even though effec-
tive tools have been developed for multimedia databases in the past [35], powerful
semantic data modeling techniques and content based retrieval databases still do
not exist for biological imaging. Open microscopy environment (OME) is a step
towards a standard data storage format that stores the context information and
analysis results along with the data [36]. OME defines XML schemas for this pur-
pose. These schemas define the context information associated with the experiment,
such as who performed the imaging and under what conditions. OME also defines
schemas for processing algorithms that were used to analyze the data, and for the
results of such analyses. Similarly, protein subcellular location image database is
an effort towards content based retrieval for subcellular protein images [37]. Yet
many challenges remain to be addressed. These include the development of tools
for automatic indexing, spatio-temporal knowledge extraction, fast content-based
retrieval, and mining of biological imaging data. Development of these tools will
significantly improve the analysis and management of such data.

4. Current Applications of Semantic Analysis

Semantic analysis of biological imaging data has been used for a variety of successful
applications. In this section, we briefly survey some of these applications. These
include bacterial colony identification, location proteomics, and drug discovery.

4.1. Bacterial colony identification

Bacterial contamination of food products puts the public at risk and generates a
substantial cost for the food-processing industry. One of the greatest challenges in
the response to incidents of bacterial contamination is rapid recognition of the bac-
terial agents involved. Only a few currently available technologies allow testing to
be performed outside of specialized microbiological laboratories [38]. Most current
systems are based on the use of expensive techniques like polymerase chain reaction
(PCR) or antibody-based techniques, and require complicated sample preparation
for reliable results. A system for automatic interpretation and classification of scat-
ter patterns produced by bacterial colonies irradiated with red laser light is reported
in [27]. The optical measurements are performed with a laser scattering system. A
CCD image sensor is used to acquire scatter patterns like those shown in Fig. 6. The
laser generates a collimated beam of light that is directed through the center of the
bacterial colony and the substrate of agar medium. The forward-scattered light and
the transmitted light form scatter patterns directly on the detector. Different types
of features, including Zernike and Chebyshev moments and Haralick texture descrip-
tors, are extracted from these scatter patterns. A subset of these features with the
highest discriminative power is selected for classification with the help of an SVM
algorithm. This approach offers a solution to the problem of rapid discrimination
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(a) (b) (c)

Fig. 6. Examples of scatter patterns formed by (a) Listeria monocytogenes 19113, (b) Salmonella

ser. enteritidis PT28, and (c) Vibrio fluvialis.

of cultured organisms in environments which do not allow biochemical processing
of the samples, but require automation, robustness, and simplicity.

4.2. Location proteomics

Knowledge about the production, location, and spatio-temporal dynamics of vari-
ous proteins expressed in a cell is crucial for understanding cell behavior. Acquiring
and analyzing this information for all proteins expressed in different types of cells
under different developmental and environmental conditions is extremely challeng-
ing because of the sheer volume of data [39]. Manual analysis of such high-volume
data is not feasible. Recently, intelligent tools have been developed for automated
interpretation of protein sub-cellular location patterns [26, 34, 40, 41]. Boland et al.
propose to extract image features from fluorescence images of subcellular location
patterns and employ a neural network to classify such patterns [26]. The features
used for this analysis include shape, texture, and morphological features. As many
proteins are in motion inside cells, this temporal information can also be useful
for localizing protein location patterns. This analysis, however, is complicated by
the fact that protein patterns are normally not fully connected, so simple tracking
methods do not work very well. Hu et al. address this problem by using temporal
texture features to classify location patterns of five very similar proteins, using the
spatial and temporal information provided by 3-D time-lapse imaging [34]. Another
important issue is the comparison and systematic analysis of location patterns.
Chen et al. use a set of features to build a tree of proteins based on the similar-
ity of their location patterns [40]. As the collection of data for a large number of
proteins for different cell types under different conditions leads to a combinatorial
explosion, high-throughput image acquisition also becomes a challenge and requires
automated instrumentation for this purpose. Schubert et al. deal with this problem
by using a robotic platform for finding the proteins expressed in a cell by repeated
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staining [41]. The combined thrust of these efforts to improve acquisition and inter-
pretation of protein localization information will significantly help in understanding
and simulating cell behavior.

4.3. Drug discovery

HCS technologies have emerged as a promising solution for compound lead selec-
tion and drug target validation [42]. These technologies image large populations
of cells under different experimental conditions for understanding cell behavior.
For example, monitoring cell cycle progress yields information about the effects
of drugs on cancer cells [33]. Chen et al. present an automated system for seg-
menting, tracking, and classifying cells during different phases of the cell cycle in
[33]. They use automatic thresholding, a watershed algorithm, and shape and size
information to segment touching and overlapping nuclei. A set of seven features
and a k-nearest neighbor classifier are then used for cell phase identification. Some
errors introduced by this classification approach are removed by using knowledge-
based heuristic rules. DNA microarray imaging is another powerful technology for
studying expression patterns of genes in a high-throughput manner [43]. These
technologies can help in identifying targets for drugs by studying gene function.
Image analysis is an important step for extracting information from microarray
images. A comparison of different techniques for addressing, segmentation and
background correction for microarray image analysis appears in [43]. A high-
throughput drug profiling technique using automated microscopy and image anal-
ysis is reported in [44]. The authors consider the effect of drug concentration on
cell phenotypes using a titration invariant similarity score. The information about
cell states, genes, and protein regulatory networks and their changes can help in
understanding biological systems and developing simulation models for their behav-
ior. These models and detailed information about genes, proteins, cells, organs,
and organisms have the potential to improve our understanding of disease mecha-
nisms. This can not only result in improvements in drug discovery process but can
also potentially change medical practice from reactive medicine to preventive and
personalized medicine.

5. A Component-Based System for Semantic Analysis

Based on the discussion in the previous sections, we present a component-based
system for knowledge-based semantic analysis of biological imaging data as shown
in Fig. 7. XML schemas can be used to store domain knowledge at different layers
of the system. We have presented schemas for representing biological objects and
spatio-temporal events in [45]. The user interacts with the system through a graphi-
cal user interface (GUI). The GUI provides an XML editor that is used for describing
the attributes of objects and events manually. Alternatively, a feature extraction
module is provided that can be used for specifying objects and events. The user pro-
vides example images of objects and events and the feature extractor automatically
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Fig. 7. Component-based system for semantic analysis of biological images.

extracts the features and generates XML representations that are stored in object
and event templates libraries. The context extractor module collects the context
information from the user. The user context information as well as the information
in object and event templates libraries is used by object and event recognition tools
for identifying their specific instances in image sets. Low-level object information is
extracted using preprocessing, object detection, recognition, and tracking modules.
These low-level object features for all the objects found in the image set are stored
in the physical objects database. This object-level information is then analyzed
by the spatio-temporal analyzer. The spatial and temporal event templates library
holds information about the events of interest in the form of XML schemas. This
library is populated either manually using the XML editor or by providing example
images for events of interest. The high-level spatio-temporal knowledge extracted
by the spatio-temporal analyzer is stored in the semantic knowledge database as
XML schemas. The visualization module is used for summarization and visualiza-
tion of the extracted semantic knowledge. The user queries the semantic knowledge
database using the query processor. Textual as well as visual query languages can
be used for this purpose.
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6. Summary

In this paper we have outlined major challenges and current approaches for semantic
analysis of biological imaging data. Modern biological imaging technologies produce
huge volumes of imaging data. Powerful knowledge extraction and data management
tools are required for analyzing these data. Intelligent semantic interpretation tools
have already started to have an impact on biological data analysis. However, there
are significant challenges to be overcome. We summarize these as challenges at the
lower and the higher levels of processing. At the lower level, powerful and robust
algorithms are needed for segmentation and tracking of biological objects. Owing to
the heterogeneity of biological systems, specialized algorithms tailored to the needs
of specific applications will be required. Standardized test sets and performance
measures will also be needed for objective and quantitative comparison of different
algorithms. Powerful and computationally efficient feature extraction algorithms
will be essential for robust classification of biological objects. Since the low-level
processing is the most computationally intensive, all the algorithms at this level
must have low computational complexity so that large biological image sets can be
processed in a reasonable amount of time. At the higher level, models and formalisms
will be required for extracting and representing spatio-temporal semantics from
biological images. These models must be powerful enough to capture the semantics
of a wide variety of biological objects and events. Such models should also support
interoperability. XML-based schemes will be useful to enable interoperability of such
models among different research groups. Moreover, efficient database management
systems will be needed for storage and fast content-based retrieval of these data.
It is clear that overcoming these challenges will require collaborative efforts by
biologists and computer vision, image processing, and knowledge representation
experts. The benefits of this multidisciplinary approach will include a more detailed
understanding of biological systems, significant improvements in the drug design
process, and the resultant predictive role of information technology in preventive
medicine.
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